Suppr超能文献

SU-E-J-126:在真实的改良XCAT体模数据上使用单X射线投影生成荧光透视3D图像。

SU-E-J-126: Generation of Fluoroscopic 3D Images Using Single X-Ray Projections on Realistic Modified XCAT Phantom Data.

作者信息

Mishra P, Li R, St James S, Yue Y, Mak R, Berbeco R, Lewis J

机构信息

Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.

Stanford University, Stanford, CA.

出版信息

Med Phys. 2012 Jun;39(6Part8):3681. doi: 10.1118/1.4734962.

Abstract

PURPOSE

To simulate the process of generating fluoroscopic 3D treatment images from 4DCT and measured 2D x-ray projections using a realistic modified XCAT phantom based on measured patient 3D tumor trajectories.

METHODS

First, the existing XCAT phantom is adapted to incorporate measured patient lung tumor trajectories. Realistic diaphragm and chest wall motion are automatically generated based on input tumor motion and position, producing synchronized, realistic motion in the phantom. Based on 4DCT generated with the XCAT phantom, we derive patient-specific motion models that are used to generate 3D fluoroscopic images. Patient-specific models are created in two steps: first, the displacement vector fields (DVFs) are obtained through deformable image registration of each phase of 4DCT with respect to a reference image (typically peak-exhale). Each phase is registered to the reference image to obtain (n-1) DVFs. Second, the most salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). Since PCA is a linear decomposition method, all the DVFs can be represented as linear combinations of eigenvectors. Fluoroscopic 3D images are obtained using the projection image to determine optimal weights for the eigenvectors. These weights are determined through iterative optimization of a cost function relating the projection image to the 3D image via the PCA lung motion model and a projection operator. Constructing fluoroscopic 3D images is thus reduced to finding optimal weights for the eigenvectors.

RESULTS

Fluoroscopic 3D treatment images were generated using the modified XCAT phantom. The average relative error of the reconstructed image over 30 sec is 0.0457 HU and the standard deviation is 0.0063.

CONCLUSIONS

The XCAT phantom was modified to produce realistic images by incorporating patient tumor trajectories. The modified XCAT phantom can be used to simulate the process of generating fluoroscopic 3D treatment images from 4DCT and 2D x-ray projections.

摘要

目的

使用基于实测患者三维肿瘤轨迹的逼真的改进型XCAT体模,模拟从4DCT和实测二维X射线投影生成透视三维治疗图像的过程。

方法

首先,对现有的XCAT体模进行调整,以纳入实测的患者肺部肿瘤轨迹。基于输入的肿瘤运动和位置自动生成逼真的膈肌和胸壁运动,在体模中产生同步、逼真的运动。基于用XCAT体模生成的4DCT,我们推导用于生成三维透视图像的患者特异性运动模型。患者特异性模型分两步创建:首先,通过将4DCT的每个相位相对于参考图像(通常为呼气峰值)进行可变形图像配准来获得位移矢量场(DVF)。每个相位与参考图像配准以获得(n - 1)个DVF。其次,通过主成分分析(PCA)以紧凑表示形式捕获DVF中最显著的特征。由于PCA是一种线性分解方法,所有DVF都可以表示为特征向量的线性组合。使用投影图像确定特征向量的最佳权重来获得透视三维图像。这些权重通过对经由PCA肺部运动模型和投影算子将投影图像与三维图像相关联的代价函数进行迭代优化来确定。因此,构建透视三维图像简化为寻找特征向量的最佳权重。

结果

使用改进的XCAT体模生成了透视三维治疗图像。重建图像在30秒内的平均相对误差为0.0457 HU,标准差为0.0063。

结论

通过纳入患者肿瘤轨迹对XCAT体模进行了修改,以生成逼真的图像。改进的XCAT体模可用于模拟从4DCT和二维X射线投影生成透视三维治疗图像的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验