Suppr超能文献

基于单次 X 射线投影图像的肺癌放疗实时容积图像重建和 3D 肿瘤定位。

Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

出版信息

Med Phys. 2010 Jun;37(6):2822-6. doi: 10.1118/1.3426002.

Abstract

PURPOSE

To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

METHODS

Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude.

RESULTS

The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s).

CONCLUSIONS

The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

摘要

目的

开发一种基于单张 X 射线投影图像的肺癌放射治疗实时容积图像重建和 3D 肿瘤定位算法。

方法

以患者在 N 个呼吸阶段的一组容积图像作为训练数据,在参考阶段和其他 N-1 个阶段之间进行可变形图像配准,得到 N-1 个变形矢量场(DVF)。这些 DVF 可以通过主成分分析(PCA)得到的少数特征向量和系数来有效地表示。通过改变 PCA 系数,可以生成新的 DVF,将其应用于参考图像可以生成新的容积图像。通过优化 PCA 系数,可以从单个投影图像重建容积图像,使其计算出的投影与测量的投影匹配。通过将反转的 DVF 应用于参考图像中肿瘤的位置,可以得出肿瘤的 3D 位置。该算法在图形处理单元(GPU)上实现,以达到实时效率。训练数据是使用具有十个呼吸阶段的逼真动态数学体模生成的。测试数据是对应于一个旋转机架的 360 个锥形束投影,使用呼吸幅度增加 50%的相同体模模拟得到。

结果

重建容积图像的平均相对图像强度误差为 6.9% +/- 2.4%。平均 3D 肿瘤定位误差为 0.8 +/- 0.5 毫米。在 NVIDIA Tesla C1060 GPU 卡上,从每个投影重建容积图像的平均计算时间为 0.24 秒(范围:0.17 至 0.35 秒)。

结论

作者已经证明了从单个 X 射线图像实时重建容积图像并在 3D 中定位肿瘤位置的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验