Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Chemical Engineering and Technology, Tianjin University , and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.
Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University , Beijing 100048, P. R. China.
ACS Nano. 2017 Jun 27;11(6):5766-5773. doi: 10.1021/acsnano.7b01351. Epub 2017 May 23.
Fabrication of semiconductor nanowire laser arrays is very challenging, owing to difficulties in direct monolithic growth and patterning of III-V semiconductors on silicon substrates. Recently, methylammonium lead halide perovskites (MAPbX, X = Cl, Br, I) have emerged as an important class of high-performance solution-processed optoelectronic materials. Here, we combined the "top-down" fabricated polydimethylsiloxane rectangular groove template (RGT) with the "bottom-up" solution self-assembly together to prepare large-scale perovskite nanowire (PNW) arrays. The template confinement effect led to the directional growth of MAPbX along RGTs into PNWs. We achieved precise control over not only the dimensions of individual PNWs (width 460-2500 nm; height 80-1000 nm, and length 10-50 μm) but also the interwire distances. Well-defined dimensions and uniform geometries enabled individual PNWs to function as high-quality Fabry-Perot nanolasers with almost identical optical modes and similarly low-lasing thresholds, allowing them to ignite simultaneously as a laser array. Optical tests demonstrated that PNW laser arrays exhibit good photostabillity with an operation duration exceeding 4 × 10 laser pulses. Precise placement of PNW arrays at specific locations makes our method highly compatible with lithographic techniques, which are important for integrating PNW electronic and photonic circuits.
半导体纳米线激光阵列的制造极具挑战性,因为直接在硅衬底上进行 III-V 半导体的单片生长和图案化存在困难。最近,卤化铅甲胺(MAPbX,X = Cl、Br、I)钙钛矿作为一类重要的高性能溶液处理光电材料而崭露头角。在这里,我们将“自上而下”制造的聚二甲基硅氧烷(PDMS)矩形槽模板(RGT)与“自下而上”的溶液自组装相结合,制备了大规模的钙钛矿纳米线(PNW)阵列。模板限制效应导致 MAPbX 沿着 RGT 定向生长成 PNW。我们不仅实现了对单个 PNW 的尺寸(宽度 460-2500nm;高度 80-1000nm,长度 10-50μm)的精确控制,还实现了对相邻纳米线之间距离的精确控制。明确的尺寸和均匀的几何形状使得单个 PNW 能够作为高质量的法布里-珀罗纳米激光器发挥作用,其光学模式几乎相同,激光阈值也类似低,从而能够同时作为激光阵列被激发。光学测试表明,PNW 激光阵列具有良好的光稳定性,其工作时间超过 4×10 激光脉冲。PNW 阵列在特定位置的精确定位使得我们的方法与光刻技术高度兼容,这对于集成 PNW 电子和光子电路非常重要。