Suppr超能文献

酵母中基于朊病毒的热应激记忆

Prion-based memory of heat stress in yeast.

作者信息

Chernova Tatiana A, Chernoff Yury O, Wilkinson Keith D

机构信息

a Department of Biochemistry , Emory University School of Medicine , Atlanta , GA , USA.

b School of Biological Sciences , Georgia Institute of Technology , Atlanta , GA , USA.

出版信息

Prion. 2017 May 4;11(3):151-161. doi: 10.1080/19336896.2017.1328342. Epub 2017 May 19.

Abstract

Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.

摘要

淀粉样蛋白和基于淀粉样蛋白的朊病毒是自我延续的蛋白质聚集体,它们可以通过将相同序列的正常蛋白质转化为朊病毒形式来传播。它们与人类和哺乳动物的疾病有关,并控制酵母和其他真菌中的可遗传性状。一些淀粉样蛋白与生物有益过程有关。由于朊病毒的形成产生了构象变化的可重复记忆,因此朊病毒可被视为分子记忆装置。我们已经证明,在酵母中,应激诱导的细胞骨架相关蛋白Lsb2在高温下会形成一种亚稳态朊病毒。这种朊病毒促进其他蛋白质转化为朊病毒,并能在应激后的相当数量的细胞世代中在一部分细胞中持续存在,从而在一群存活细胞中维持应激记忆。在酿酒酵母的进化过程中,Lsb2形成朊病毒所需的氨基酸替代的获得与耐热性的增加相一致。因此,响应应激形成Lsb2朊病毒的能力与酵母适应在更高温度下生长相一致。这些发现将朊病毒的形成与细胞对环境应激的反应紧密联系起来。

相似文献

1
Prion-based memory of heat stress in yeast.
Prion. 2017 May 4;11(3):151-161. doi: 10.1080/19336896.2017.1328342. Epub 2017 May 19.
2
Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress.
Cell Rep. 2017 Jan 17;18(3):751-761. doi: 10.1016/j.celrep.2016.12.082.
3
Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion.
J Biol Chem. 2014 Oct 3;289(40):27625-39. doi: 10.1074/jbc.M114.582429. Epub 2014 Aug 20.
5
Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.
J Biol Chem. 2011 May 6;286(18):15773-80. doi: 10.1074/jbc.M110.183889. Epub 2011 Mar 15.
6
Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
mBio. 2016 Jul 12;7(4):e00915-16. doi: 10.1128/mBio.00915-16.
7
The small heat shock protein Hsp31 cooperates with Hsp104 to modulate Sup35 prion aggregation.
Prion. 2016 Nov;10(6):444-465. doi: 10.1080/19336896.2016.1234574.
8
Yeast Chaperone Hsp70-Ssb Modulates a Variety of Protein-Based Heritable Elements.
Int J Mol Sci. 2023 May 12;24(10):8660. doi: 10.3390/ijms24108660.
10
Conversion of a yeast prion protein to an infectious form in bacteria.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10596-601. doi: 10.1073/pnas.0913280107. Epub 2010 May 19.

引用本文的文献

1
Thermotolerance in S. cerevisiae as a model to study extracellular vesicle biology.
J Extracell Vesicles. 2024 May;13(5):e12431. doi: 10.1002/jev2.12431.
2
Self-organized computation in the far-from-equilibrium cell.
Biophys Rev (Melville). 2022 Dec 27;3(4):041303. doi: 10.1063/5.0103151. eCollection 2022 Dec.
4
Understanding the Impact of Industrial Stress Conditions on Replicative Aging in .
Front Fungal Biol. 2021 Jun 2;2:665490. doi: 10.3389/ffunb.2021.665490. eCollection 2021.
5
Yeast Chaperone Hsp70-Ssb Modulates a Variety of Protein-Based Heritable Elements.
Int J Mol Sci. 2023 May 12;24(10):8660. doi: 10.3390/ijms24108660.
6
Phenotypic plasticity as a facilitator of microbial evolution.
Environ Epigenet. 2022 Nov 17;8(1):dvac020. doi: 10.1093/eep/dvac020. eCollection 2022.
8
Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p.
PLoS One. 2021 May 21;16(5):e0247285. doi: 10.1371/journal.pone.0247285. eCollection 2021.
9
Mechanisms and regulation underlying membraneless organelle plasticity control.
J Mol Cell Biol. 2021 Aug 4;13(4):239-258. doi: 10.1093/jmcb/mjab028.

本文引用的文献

1
Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response to Thermal Stress.
Cell Rep. 2017 Jan 17;18(3):751-761. doi: 10.1016/j.celrep.2016.12.082.
3
WASP family proteins, more than Arp2/3 activators.
Biochem Soc Trans. 2016 Oct 15;44(5):1339-1345. doi: 10.1042/BST20160176.
4
Prions, Chaperones, and Proteostasis in Yeast.
Cold Spring Harb Perspect Biol. 2017 Feb 1;9(2):a023663. doi: 10.1101/cshperspect.a023663.
5
Bap: A New Type of Functional Amyloid.
Trends Microbiol. 2016 Sep;24(9):682-684. doi: 10.1016/j.tim.2016.07.004. Epub 2016 Jul 21.
6
Generating new prions by targeted mutation or segment duplication.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8584-9. doi: 10.1073/pnas.1501072112. Epub 2015 Jun 22.
7
The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-like Protein CPEB3.
Neuron. 2015 Jun 17;86(6):1433-48. doi: 10.1016/j.neuron.2015.05.021. Epub 2015 Jun 11.
9
Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion.
J Biol Chem. 2014 Oct 3;289(40):27625-39. doi: 10.1074/jbc.M114.582429. Epub 2014 Aug 20.
10
Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton.
IUBMB Life. 2014 Aug;66(8):538-45. doi: 10.1002/iub.1294. Epub 2014 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验