CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida, 32816, USA.
Sci Rep. 2017 May 18;7(1):2129. doi: 10.1038/s41598-017-02340-9.
On-chip photonic networks hold great promise for enabling next-generation high speed computation and communication systems. It is currently envisioned that future integrated photonic networks will be capable of processing dense digital information on a single monolithic platform by involving a multitude of optical components ranging from lasers to modulators, to routers, interconnects and detectors. Among the possible functionalities to be incorporated in such arrangements is the ability to route information in a unidirectional way among N-ports - a capability typically afforded through the use of optical circulators. Yet, in many settings, what is basically needed is re-routing information in a unidirectional fashion without necessarily invoking optical isolation. Of interest would be to devise strategies through which miniaturized optical devices can be monolithically fabricated on light-emitting semiconductors by solely relying on physical properties that are indigenous to the material itself. By exploiting the interplay between non-Hermiticity and nonlinearity, here we demonstrate a new class of chip-scale information transport devices on spatially modified III-V quantum well systems. These unidirectional structures are broadband (over 2.5 THz) at 1550 nm, effectively loss-free, color-preserving, and in proof-of-principle demonstrations have provided 23 dB isolation when used under pulsed-mode conditions at milliwatt (mW) power levels.
片上光子网络在实现下一代高速计算和通信系统方面具有巨大的潜力。目前设想,未来的集成光子网络将能够通过涉及从激光器到调制器、路由器、互连和探测器等多种光学组件,在单个单片平台上处理密集的数字信息。在这种结构中可能要包含的功能之一是在 N 个端口之间以单向方式路由信息的能力——这一功能通常通过使用光环形器来实现。然而,在许多情况下,基本需要的是在不一定要采用光学隔离的情况下以单向方式重新路由信息。人们感兴趣的是设计策略,通过这些策略可以通过仅依赖于材料本身固有的物理特性,在发光半导体上单片制造小型化的光学器件。通过利用非厄米性和非线性之间的相互作用,我们在这里展示了一类基于空间修正 III-V 量子阱系统的新型片上信息传输器件。这些单向结构在 1550nm 时带宽很宽(超过 2.5THz),有效无损耗,保持颜色不变,并且在原理验证演示中,当在毫瓦(mW)功率水平下以脉冲模式使用时,提供了 23dB 的隔离度。