Suppr超能文献

混合治愈模型中治愈概率的预测准确性。

Prediction accuracy for the cure probabilities in mixture cure models.

作者信息

Jiang Wenyu, Sun Haoyu, Peng Yingwei

机构信息

1 Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada.

2 Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.

出版信息

Stat Methods Med Res. 2017 Oct;26(5):2029-2041. doi: 10.1177/0962280217708673. Epub 2017 May 19.

Abstract

Prediction accuracy of a cure model when it is used to predict the cure probability of a patient is an important but not well-addressed issue in survival analysis. We propose a method to assess the prediction accuracy of a mixture cure model in predicting cure probability based on inverse probability of censoring weights to incorporate the censoring and latent cure status in the data. The inverse probability of censoring weight-adjusted estimator is shown to be consistent for the true expected prediction error for cure probability. A simulation study shows that the estimator performs well with finite samples when subjects with censored survival times greater than the largest uncensored time are identified as cured, an approach that is often used in mixture cure model literature to increase model identifiability. The simulation study also investigates the performance of the estimator with different thresholds to identify cured subjects and the estimator based on observed (training) data only. The method is applied to bone barrow transplant data for leukemia patients for assessing prediction accuracy for the cure probabilities.

摘要

当一个治愈模型用于预测患者的治愈概率时,其预测准确性是生存分析中一个重要但尚未得到充分解决的问题。我们提出了一种基于删失权重的逆概率来评估混合治愈模型预测治愈概率时的预测准确性的方法,以纳入数据中的删失和潜在治愈状态。结果表明,删失权重调整估计量对于治愈概率的真实预期预测误差是一致的。一项模拟研究表明,当生存时间被删失且大于最大未删失时间的受试者被识别为治愈时(这是混合治愈模型文献中常用的一种提高模型可识别性的方法),该估计量在有限样本中表现良好。模拟研究还考察了使用不同阈值识别治愈受试者时该估计量的性能,以及仅基于观察(训练)数据的估计量的性能。该方法应用于白血病患者的骨髓移植数据,以评估治愈概率的预测准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验