Suppr超能文献

多状态风险预测模型的校准图。

Calibration plots for multistate risk predictions models.

机构信息

Centre for Health Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.

NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, UK.

出版信息

Stat Med. 2024 Jun 30;43(14):2830-2852. doi: 10.1002/sim.10094. Epub 2024 May 8.

Abstract

INTRODUCTION

There is currently no guidance on how to assess the calibration of multistate models used for risk prediction. We introduce several techniques that can be used to produce calibration plots for the transition probabilities of a multistate model, before assessing their performance in the presence of random and independent censoring through a simulation.

METHODS

We studied pseudo-values based on the Aalen-Johansen estimator, binary logistic regression with inverse probability of censoring weights (BLR-IPCW), and multinomial logistic regression with inverse probability of censoring weights (MLR-IPCW). The MLR-IPCW approach results in a calibration scatter plot, providing extra insight about the calibration. We simulated data with varying levels of censoring and evaluated the ability of each method to estimate the calibration curve for a set of predicted transition probabilities. We also developed evaluated the calibration of a model predicting the incidence of cardiovascular disease, type 2 diabetes and chronic kidney disease among a cohort of patients derived from linked primary and secondary healthcare records.

RESULTS

The pseudo-value, BLR-IPCW, and MLR-IPCW approaches give unbiased estimates of the calibration curves under random censoring. These methods remained predominately unbiased in the presence of independent censoring, even if the censoring mechanism was strongly associated with the outcome, with bias concentrated in low-density regions of predicted transition probability.

CONCLUSIONS

We recommend implementing either the pseudo-value or BLR-IPCW approaches to produce a calibration curve, combined with the MLR-IPCW approach to produce a calibration scatter plot. The methods have been incorporated into the "calibmsm" R package available on CRAN.

摘要

简介

目前尚无关于如何评估用于风险预测的多状态模型校准的指南。我们介绍了几种技术,这些技术可用于生成多状态模型的转移概率的校准图,然后通过模拟在存在随机和独立删失的情况下评估其性能。

方法

我们研究了基于 Aalen-Johansen 估计量的伪值、带有反概率删失权重的二项逻辑回归(BLR-IPCW)和带有反概率删失权重的多项逻辑回归(MLR-IPCW)。MLR-IPCW 方法产生校准散点图,提供有关校准的额外见解。我们模拟了具有不同删失水平的数据,并评估了每种方法对一组预测转移概率的校准曲线的估计能力。我们还开发了一种预测来自初级和二级医疗记录链接的患者队列中心血管疾病、2 型糖尿病和慢性肾病发病率的模型的校准。

结果

在随机删失下,伪值、BLR-IPCW 和 MLR-IPCW 方法对校准曲线的估计是无偏的。即使删失机制与结局密切相关,这些方法在独立删失的情况下仍然主要是无偏的,偏差集中在预测转移概率的低密度区域。

结论

我们建议实施伪值或 BLR-IPCW 方法来生成校准曲线,并结合 MLR-IPCW 方法生成校准散点图。这些方法已被纳入 CRAN 上可用的“calibmsm”R 包中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验