Suppr超能文献

关于用于评估生存预测误差的删失权重的逆概率估计

On the estimation of inverse-probability-of-censoring weights for the evaluation of survival prediction error.

作者信息

Prince Thomas, Bommert Andrea, Rahnenführer Jörg, Schmid Matthias

机构信息

Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany.

Department of Statistics, TU Dortmund University, Dortmund, Germany.

出版信息

PLoS One. 2025 Jan 31;20(1):e0318349. doi: 10.1371/journal.pone.0318349. eCollection 2025.

Abstract

Inverse probability weighting (IPW) is a popular method for making inferences regarding unobserved or unobservable data of a target population based on observed data. This paper considers IPW applied to right-censored time-to-event data. We investigate the behavior of the inverse-probability-of-censoring weighted (IPCW) Brier score, which is frequently used to assess the predictive performance of time-to-event models. A key requirement of the IPCW Brier score is the estimation of the censoring distribution, which is needed to compute the weights. The established paradigm of splitting a dataset into a training and a test set for model fitting and evaluation raises the question which of these datasets to use in order to fit the censoring model. There seems to be considerable disagreement between authors with regards to this issue, and no standard has been established so far. To shed light on this important question, we conducted a comprehensive experimental study exploring various data scenarios and estimation schemes. We found that it is generally of little importance which dataset is used to model the censoring distribution. However, in some circumstances, such as in the case of a covariate-dependent censoring process, a small sample size, or when dealing with noisy data, it may be advisable to use the test set instead of the training set to model the censoring distribution. A detailed set of practical recommendations concludes our paper.

摘要

逆概率加权(IPW)是一种基于观测数据对目标人群未观测或不可观测数据进行推断的常用方法。本文考虑将IPW应用于右删失的生存时间数据。我们研究了删失加权(IPCW)Brier评分的行为,该评分常用于评估生存时间模型的预测性能。IPCW Brier评分的一个关键要求是估计删失分布,这是计算权重所必需的。将数据集划分为训练集和测试集以进行模型拟合和评估的既定范式引发了一个问题,即应使用这些数据集中的哪一个来拟合删失模型。关于这个问题,作者之间似乎存在相当大的分歧,到目前为止尚未建立标准。为了阐明这个重要问题,我们进行了一项全面的实验研究,探索各种数据场景和估计方案。我们发现,使用哪个数据集来建模删失分布通常不太重要。然而,在某些情况下,例如在协变量依赖的删失过程、小样本量或处理噪声数据的情况下,使用测试集而不是训练集来建模删失分布可能是明智的。本文最后给出了一套详细的实用建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eda/11785332/5941dafa1bef/pone.0318349.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验