Suppr超能文献

SCENERY:一个用于从细胞仪数据中进行(因果)网络重建的网络应用程序。

SCENERY: a web application for (causal) network reconstruction from cytometry data.

机构信息

Computer Science Department, University of Crete, Heraklion, Crete 700 13, Greece.

Gnosis Data Analysis I.K.E., Heraklion, Crete 71305, Greece.

出版信息

Nucleic Acids Res. 2017 Jul 3;45(W1):W270-W275. doi: 10.1093/nar/gkx448.

Abstract

Flow and mass cytometry technologies can probe proteins as biological markers in thousands of individual cells simultaneously, providing unprecedented opportunities for reconstructing networks of protein interactions through machine learning algorithms. The network reconstruction (NR) problem has been well-studied by the machine learning community. However, the potentials of available methods remain largely unknown to the cytometry community, mainly due to their intrinsic complexity and the lack of comprehensive, powerful and easy-to-use NR software implementations specific for cytometry data. To bridge this gap, we present Single CEll NEtwork Reconstruction sYstem (SCENERY), a web server featuring several standard and advanced cytometry data analysis methods coupled with NR algorithms in a user-friendly, on-line environment. In SCENERY, users may upload their data and set their own study design. The server offers several data analysis options categorized into three classes of methods: data (pre)processing, statistical analysis and NR. The server also provides interactive visualization and download of results as ready-to-publish images or multimedia reports. Its core is modular and based on the widely-used and robust R platform allowing power users to extend its functionalities by submitting their own NR methods. SCENERY is available at scenery.csd.uoc.gr or http://mensxmachina.org/en/software/.

摘要

流式和液滴式细胞术技术可以同时探测数以千计的单个细胞中的蛋白质作为生物标志物,为通过机器学习算法重建蛋白质相互作用网络提供了前所未有的机会。机器学习社区已经很好地研究了网络重建 (NR) 问题。然而,由于其内在的复杂性以及缺乏针对细胞术数据的全面、强大和易于使用的 NR 软件实现,这些方法的潜力在很大程度上不为细胞术社区所知。为了弥合这一差距,我们提出了单细胞网络重建系统 (SCENERY),这是一个基于网络的服务器,具有几个标准和先进的细胞术数据分析方法,并结合了 NR 算法,以用户友好的在线环境呈现。在 SCENERY 中,用户可以上传他们的数据并设置自己的研究设计。该服务器提供了几个数据分析选项,分为三类方法:数据(预处理)、统计分析和 NR。该服务器还提供了结果的交互式可视化和下载,可作为可发布的图像或多媒体报告。它的核心是模块化的,基于广泛使用且强大的 R 平台,允许高级用户通过提交自己的 NR 方法来扩展其功能。SCENERY 可在 scenery.csd.uoc.gr 或 http://mensxmachina.org/en/software/ 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbe1/5570263/d47b6a04b18f/gkx448fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验