Suppr超能文献

基于非线性随机嵌入的细胞表达自动分类(ACCENSE)。

Automatic Classification of Cellular Expression by Nonlinear Stochastic Embedding (ACCENSE).

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):202-7. doi: 10.1073/pnas.1321405111. Epub 2013 Dec 16.

Abstract

Mass cytometry enables an unprecedented number of parameters to be measured in individual cells at a high throughput, but the large dimensionality of the resulting data severely limits approaches relying on manual "gating." Clustering cells based on phenotypic similarity comes at a loss of single-cell resolution and often the number of subpopulations is unknown a priori. Here we describe ACCENSE, a tool that combines nonlinear dimensionality reduction with density-based partitioning, and displays multivariate cellular phenotypes on a 2D plot. We apply ACCENSE to 35-parameter mass cytometry data from CD8(+) T cells derived from specific pathogen-free and germ-free mice, and stratify cells into phenotypic subpopulations. Our results show significant heterogeneity within the known CD8(+) T-cell subpopulations, and of particular note is that we find a large novel subpopulation in both specific pathogen-free and germ-free mice that has not been described previously. This subpopulation possesses a phenotypic signature that is distinct from conventional naive and memory subpopulations when analyzed by ACCENSE, but is not distinguishable on a biaxial plot of standard markers. We are able to automatically identify cellular subpopulations based on all proteins analyzed, thus aiding the full utilization of powerful new single-cell technologies such as mass cytometry.

摘要

质谱流式细胞术能够在单个细胞中以高通量的方式测量前所未有的数量的参数,但由此产生的数据的巨大维度严重限制了依赖于手动“门控”的方法。基于表型相似性对细胞进行聚类会损失单细胞分辨率,并且通常事先不知道亚群的数量。在这里,我们描述了 ACCENSE,这是一种将非线性降维和基于密度的分区相结合的工具,并在 2D 图上显示多变量细胞表型。我们将 ACCENSE 应用于源自无特定病原体和无菌小鼠的 CD8(+) T 细胞的 35 个参数的质谱流式细胞术数据,并将细胞分层为表型亚群。我们的结果显示,在已知的 CD8(+) T 细胞亚群中存在显著的异质性,值得注意的是,我们在无特定病原体和无菌小鼠中都发现了一个以前未描述的大型新型亚群。该亚群在通过 ACCENSE 分析时具有与传统幼稚和记忆亚群不同的表型特征,但在标准标志物的双轴图上无法区分。我们能够基于分析的所有蛋白质自动识别细胞亚群,从而有助于充分利用像质谱流式细胞术这样强大的新型单细胞技术。

相似文献

6
Extended immunophenotyping reference values in a healthy pediatric population.健康儿童人群的扩展免疫表型参考值。
Cytometry B Clin Cytom. 2019 May;96(3):223-233. doi: 10.1002/cyto.b.21728. Epub 2018 Oct 17.
8
Probability state modeling of memory CD8⁺ T-cell differentiation.记忆性 CD8⁺ T 细胞分化的概率状态建模。
J Immunol Methods. 2013 Nov 29;397(1-2):8-17. doi: 10.1016/j.jim.2013.08.003. Epub 2013 Aug 14.

引用本文的文献

10
Computational Methods for Single-Cell Proteomics.单细胞蛋白质组学的计算方法。
Annu Rev Biomed Data Sci. 2023 Aug 10;6:47-71. doi: 10.1146/annurev-biodatasci-020422-050255. Epub 2023 Apr 11.

本文引用的文献

5
A deep profiler's guide to cytometry.细胞仪深入剖析指南
Trends Immunol. 2012 Jul;33(7):323-32. doi: 10.1016/j.it.2012.02.010. Epub 2012 Apr 2.
10
Alternative memory in the CD8 T cell lineage.CD8 T 细胞谱系中的替代记忆。
Trends Immunol. 2011 Feb;32(2):50-6. doi: 10.1016/j.it.2010.12.004. Epub 2011 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验