Suppr超能文献

从时间测量中推断稀疏动态系统的统一方法。

A unified approach for sparse dynamical system inference from temporal measurements.

机构信息

Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece.

Department of Computer Science, University of Crete, Heraklion, Greece.

出版信息

Bioinformatics. 2019 Sep 15;35(18):3387-3396. doi: 10.1093/bioinformatics/btz065.

Abstract

MOTIVATION

Temporal variations in biological systems and more generally in natural sciences are typically modeled as a set of ordinary, partial or stochastic differential or difference equations. Algorithms for learning the structure and the parameters of a dynamical system are distinguished based on whether time is discrete or continuous, observations are time-series or time-course and whether the system is deterministic or stochastic, however, there is no approach able to handle the various types of dynamical systems simultaneously.

RESULTS

In this paper, we present a unified approach to infer both the structure and the parameters of non-linear dynamical systems of any type under the restriction of being linear with respect to the unknown parameters. Our approach, which is named Unified Sparse Dynamics Learning (USDL), constitutes of two steps. First, an atemporal system of equations is derived through the application of the weak formulation. Then, assuming a sparse representation for the dynamical system, we show that the inference problem can be expressed as a sparse signal recovery problem, allowing the application of an extensive body of algorithms and theoretical results. Results on simulated data demonstrate the efficacy and superiority of the USDL algorithm under multiple interventions and/or stochasticity. Additionally, USDL's accuracy significantly correlates with theoretical metrics such as the exact recovery coefficient. On real single-cell data, the proposed approach is able to induce high-confidence subgraphs of the signaling pathway.

AVAILABILITY AND IMPLEMENTATION

Source code is available at Bioinformatics online. USDL algorithm has been also integrated in SCENERY (http://scenery.csd.uoc.gr/); an online tool for single-cell mass cytometry analytics.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

生物系统和更普遍的自然科学中的时间变化通常被建模为一组普通的、偏微分或随机微分或差分方程。用于学习动态系统结构和参数的算法根据时间是离散的还是连续的、观测是时间序列还是时间过程以及系统是确定性的还是随机的来区分,但是,没有一种方法能够同时处理各种类型的动力系统。

结果

在本文中,我们提出了一种统一的方法,用于推断任何类型的非线性动力系统的结构和参数,同时限制为相对于未知参数是线性的。我们的方法名为统一稀疏动力学学习(USDL),由两个步骤组成。首先,通过应用弱形式推导出一个非时变系统的方程。然后,假设动态系统具有稀疏表示,我们表明推断问题可以表示为稀疏信号恢复问题,允许应用大量的算法和理论结果。模拟数据的结果表明,USDL 算法在多次干预和/或随机性下的有效性和优越性。此外,USDL 的准确性与理论指标(如精确恢复系数)高度相关。在真实的单细胞数据上,所提出的方法能够诱导信号通路的高置信子网。

可用性和实现

源代码可在生物信息学在线获得。USDL 算法也已集成到 SCENERY(http://scenery.csd.uoc.gr/)中;这是一个用于单细胞质谱细胞分析的在线工具。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02dc/6748758/8e65853d820a/btz065f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验