Suppr超能文献

随机遗传漂变的新形式及其在细胞群体进化中的应用。

A New Formulation of Random Genetic Drift and Its Application to the Evolution of Cell Populations.

机构信息

State Key Laboratory of Bio-control, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China.

Department of Biostatistics, School of Public Health, Yale University, New Haven, CT.

出版信息

Mol Biol Evol. 2017 Aug 1;34(8):2057-2064. doi: 10.1093/molbev/msx161.

Abstract

Random genetic drift, or stochastic change in gene frequency, is a fundamental evolutionary force that is usually defined within the ideal Wright-Fisher (WF) population. However, as the theory is increasingly applied to populations that deviate strongly from the ideal model, a paradox of random drift has emerged. When drift is defined by the WF model, it becomes stronger as the population size, N, decreases. However, the intensity of competition decreases when N decreases and, hence, drift might become weaker. To resolve the paradox, we propose that random drift be defined by the variance of "individual output", V(k) [k being the progeny number of each individual with the mean of E(k)], rather than by the WF sampling. If the distribution of k is known for any population, its strength of drift relative to a WF population of the same size, N, can be calculated. Generally, E(k) and V(k) should be density dependent but their relationships are different with or without competition, leading to opposite predictions on the efficiency of random drift as N changes. We apply the "individual output" model to asexual cell populations that are either unregulated (such as tumors) or negatively density-dependent (e.g., bacteria). In such populations, the efficiency of drift could be as low as <10% of that in WF populations. Interestingly, when N is below the carrying capacity, random drift could in fact increase as N increases. Growing asexual populations, especially tumors, may therefore be genetically even more heterogeneous than the high diversity estimated by some conventional models.

摘要

随机遗传漂变,或基因频率的随机变化,是一种基本的进化力量,通常在理想的 Wright-Fisher(WF)种群中定义。然而,随着该理论越来越多地应用于与理想模型强烈偏离的种群,随机漂变的悖论出现了。当漂变由 WF 模型定义时,随着种群大小 N 的减小而增强。然而,随着 N 的减小,竞争的强度也会降低,因此漂变可能会变弱。为了解决这个悖论,我们建议将随机漂变定义为“个体输出”方差 V(k) [k 是每个个体的后代数量,其平均值为 E(k)],而不是由 WF 抽样定义。如果知道任何种群的 k 分布,就可以计算出其相对于相同大小 WF 种群的漂变强度。通常,E(k)和 V(k)应该是密度依赖的,但它们的关系在有或没有竞争时是不同的,导致在 N 变化时对随机漂变效率的相反预测。我们将“个体输出”模型应用于不受调节的无性细胞群体(如肿瘤)或负密度依赖的群体(如细菌)。在这些群体中,漂变的效率可能低至 WF 群体的 10%以下。有趣的是,当 N 低于承载能力时,随机漂变实际上可能会随着 N 的增加而增加。因此,无性繁殖种群的生长,尤其是肿瘤,其遗传异质性可能比一些传统模型估计的更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验