Suppr超能文献

扭转载荷下静脉的扭曲屈曲

Twist buckling of veins under torsional loading.

作者信息

Garcia Justin R, Sanyal Arnav, Fatemifar Fatemeh, Mottahedi Mohammad, Han Hai-Chao

机构信息

Department of Mechanical Engineering, University of Texas at San Antonio, USA; Biomedical Engineering Program, UTSA-UTHSCSA, USA.

Department of Mechanical Engineering, University of Texas at San Antonio, USA.

出版信息

J Biomech. 2017 Jun 14;58:123-130. doi: 10.1016/j.jbiomech.2017.04.018. Epub 2017 May 5.

Abstract

Veins are often subjected to torsion and twisted veins can hinder and disrupt normal blood flow but their mechanical behavior under torsion is poorly understood. The objective of this study was to investigate the twist deformation and buckling behavior of veins under torsion. Twist buckling tests were performed on porcine internal jugular veins (IJVs) and human great saphenous veins (GSVs) at various axial stretch ratio and lumen pressure conditions to determine their critical buckling torques and critical buckling twist angles. The mechanical behavior under torsion was characterized using a two-fiber strain energy density function and the buckling behavior was then simulated using finite element analysis. Our results demonstrated that twist buckling occurred in all veins under excessive torque characterized by a sudden kink formation. The critical buckling torque increased significantly with increasing lumen pressure for both porcine IJV and human GSV. But lumen pressure and axial stretch had little effect on the critical twist angle. The human GSVs are stiffer than the porcine IJVs. Finite element simulations captured the buckling behavior for individual veins under simultaneous extension, inflation, and torsion with strong correlation between predicted critical buckling torques and experimental data (R=0.96). We conclude that veins can buckle under torsion loading and the lumen pressure significantly affects the critical buckling torque. These results improve our understanding of vein twist behavior and help identify key factors associated in the formation of twisted veins.

摘要

静脉常常受到扭转作用,扭曲的静脉会阻碍和扰乱正常血流,但其在扭转状态下的力学行为却鲜为人知。本研究的目的是探究静脉在扭转作用下的扭转变形和屈曲行为。在不同轴向拉伸比率和管腔压力条件下,对猪颈内静脉(IJVs)和人类大隐静脉(GSVs)进行扭转屈曲试验,以确定其临界屈曲扭矩和临界屈曲扭转角度。利用双纤维应变能密度函数对扭转状态下的力学行为进行表征,然后使用有限元分析模拟屈曲行为。我们的结果表明,在过大扭矩作用下,所有静脉都会发生扭转屈曲,其特征是突然形成扭结。猪颈内静脉和人类大隐静脉的临界屈曲扭矩均随管腔压力的增加而显著增加。但管腔压力和轴向拉伸对临界扭转角度影响甚微。人类大隐静脉比猪颈内静脉更硬。有限元模拟捕捉到了单个静脉在同时拉伸、扩张和扭转状态下的屈曲行为,预测的临界屈曲扭矩与实验数据之间具有很强的相关性(R = 0.96)。我们得出结论,静脉在扭转载荷作用下会发生屈曲,管腔压力会显著影响临界屈曲扭矩。这些结果增进了我们对静脉扭转行为的理解,并有助于确定与扭曲静脉形成相关的关键因素。

相似文献

1
Twist buckling of veins under torsional loading.扭转载荷下静脉的扭曲屈曲
J Biomech. 2017 Jun 14;58:123-130. doi: 10.1016/j.jbiomech.2017.04.018. Epub 2017 May 5.
2
Twist buckling behavior of arteries.动脉的扭转屈曲行为。
Biomech Model Mechanobiol. 2013 Oct;12(5):915-27. doi: 10.1007/s10237-012-0453-0. Epub 2012 Nov 16.
3
Computational simulations of the helical buckling behavior of blood vessels.计算模拟血管的螺旋屈曲行为。
Int J Numer Method Biomed Eng. 2019 Dec;35(12):e3277. doi: 10.1002/cnm.3277. Epub 2019 Nov 27.
4
Mechanical buckling of veins under internal pressure.静脉在内部压力下的力学屈曲。
Ann Biomed Eng. 2010 Apr;38(4):1345-53. doi: 10.1007/s10439-010-9929-1. Epub 2010 Jan 22.
5
Effect of Axial Stretch on Lumen Collapse of Arteries.轴向拉伸对动脉管腔塌陷的影响。
J Biomech Eng. 2016 Dec 1;138(12):1245031-6. doi: 10.1115/1.4034785.
6
Mechanical characterization and torsional buckling of pediatric cardiovascular materials.儿科心血管材料的力学特性与扭转屈曲。
Biomech Model Mechanobiol. 2024 Jun;23(3):845-860. doi: 10.1007/s10237-023-01809-z. Epub 2024 Feb 15.
8
Mechanical instability of normal and aneurysmal arteries.正常动脉和动脉瘤性动脉的机械不稳定性。
J Biomech. 2014 Dec 18;47(16):3868-3875. doi: 10.1016/j.jbiomech.2014.10.010. Epub 2014 Oct 27.
9
Stability Analysis of Arteries Under Torsion.动脉扭转稳定性分析。
J Biomech Eng. 2020 Jun 1;142(6). doi: 10.1115/1.4046051.

引用本文的文献

1
Propagating instabilities in long collapsible tubes of nonlinear biological material.非线性生物材料长可塌缩管中的传播不稳定性。
Biomech Model Mechanobiol. 2025 Aug;24(4):1363-1384. doi: 10.1007/s10237-025-01973-4. Epub 2025 Jun 17.
2
Suppressing torsional buckling in auxetic meta-shells.抑制负泊松比超壳中的扭转屈曲。
Nat Commun. 2024 Aug 14;15(1):6999. doi: 10.1038/s41467-024-51104-3.
5
Computational simulations of the helical buckling behavior of blood vessels.计算模拟血管的螺旋屈曲行为。
Int J Numer Method Biomed Eng. 2019 Dec;35(12):e3277. doi: 10.1002/cnm.3277. Epub 2019 Nov 27.
8
Arterial wall remodeling under sustained axial twisting in rats.大鼠持续轴向扭转下的动脉壁重塑
J Biomech. 2017 Jul 26;60:124-133. doi: 10.1016/j.jbiomech.2017.06.013. Epub 2017 Jun 21.

本文引用的文献

3
Effect of Axial Stretch on Lumen Collapse of Arteries.轴向拉伸对动脉管腔塌陷的影响。
J Biomech Eng. 2016 Dec 1;138(12):1245031-6. doi: 10.1115/1.4034785.
5
Investigation of the optimal collagen fibre orientation in human iliac arteries.人体髂动脉中最佳胶原纤维取向的研究。
J Mech Behav Biomed Mater. 2015 Dec;52:108-119. doi: 10.1016/j.jmbbm.2015.06.011. Epub 2015 Jun 20.
6
Constitutive modeling of human saphenous veins at overloading pressures.过载压力下人隐静脉的本构模型
J Mech Behav Biomed Mater. 2015 May;45:101-8. doi: 10.1016/j.jmbbm.2015.01.023. Epub 2015 Feb 7.
7
Artery Remodeling Under Axial Twist in Three Days Organ Culture.三天器官培养中轴向扭转下的动脉重塑
Ann Biomed Eng. 2015 Aug;43(8):1738-47. doi: 10.1007/s10439-014-1215-1. Epub 2014 Dec 12.
8
Mechanical instability of normal and aneurysmal arteries.正常动脉和动脉瘤性动脉的机械不稳定性。
J Biomech. 2014 Dec 18;47(16):3868-3875. doi: 10.1016/j.jbiomech.2014.10.010. Epub 2014 Oct 27.
9
Artery buckling analysis using a four-fiber wall model.采用四纤维壁模型的动脉弯曲分析。
J Biomech. 2014 Aug 22;47(11):2790-6. doi: 10.1016/j.jbiomech.2014.06.005. Epub 2014 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验