Suppr超能文献

采用四纤维壁模型的动脉弯曲分析。

Artery buckling analysis using a four-fiber wall model.

机构信息

Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.

Orthopaedics Department, Shaanxi Province People׳s Second Hospital, Xi'an, China.

出版信息

J Biomech. 2014 Aug 22;47(11):2790-6. doi: 10.1016/j.jbiomech.2014.06.005. Epub 2014 Jun 11.

Abstract

Artery bent buckling has been suggested as a possible mechanism that leads to artery tortuosity, which is associated with aging, hypertension, atherosclerosis, and other pathological conditions. It is necessary to understand the relationship between microscopic wall structural changes and macroscopic artery buckling behavior. To this end, the objectives of this study were to develop arterial buckling equations using a microstructure-based 4-fiber reinforced wall model, and to simulate the effects of vessel wall microstructural changes on artery buckling. Our results showed that the critical pressure increased nonlinearly with the axial stretch ratio, and the 4-fiber model predicted higher critical buckling pressures than what the Fung model predicted. The buckling equation using the 4-fiber model captured the experimentally observed reduction of critical pressure induced by elastin degradation and collagen fiber orientation changes in the arterial wall. These results improve our understanding of arterial stability and its relationship to microscopic wall remodeling, and the model provides a useful tool for further studies.

摘要

动脉弯曲屈曲被认为是导致动脉迂曲的一种可能机制,动脉迂曲与衰老、高血压、动脉粥样硬化和其他病理状况有关。有必要了解微观壁结构变化与宏观动脉屈曲行为之间的关系。为此,本研究的目的是使用基于微观结构的 4 纤维增强壁模型开发动脉屈曲方程,并模拟血管壁微观结构变化对动脉屈曲的影响。研究结果表明,临界压力随轴向拉伸比呈非线性增加,并且 4 纤维模型预测的临界屈曲压力高于 Fung 模型预测的压力。使用 4 纤维模型的屈曲方程捕捉到了实验观察到的由动脉壁中弹性蛋白降解和胶原纤维取向变化引起的临界压力降低。这些结果提高了我们对动脉稳定性及其与微观壁重塑关系的理解,该模型为进一步的研究提供了有用的工具。

相似文献

1
Artery buckling analysis using a four-fiber wall model.
J Biomech. 2014 Aug 22;47(11):2790-6. doi: 10.1016/j.jbiomech.2014.06.005. Epub 2014 Jun 11.
2
An in vivo rat model of artery buckling for studying wall remodeling.
Ann Biomed Eng. 2014 Aug;42(8):1658-67. doi: 10.1007/s10439-014-1017-5. Epub 2014 May 3.
3
Artery buckling analysis using a two-layered wall model with collagen dispersion.
J Mech Behav Biomed Mater. 2016 Jul;60:515-524. doi: 10.1016/j.jmbbm.2016.03.007. Epub 2016 Mar 16.
4
Effects of elastin degradation and surrounding matrix support on artery stability.
Am J Physiol Heart Circ Physiol. 2012 Feb 15;302(4):H873-84. doi: 10.1152/ajpheart.00463.2011. Epub 2011 Dec 9.
5
The effects of axial twisting and material non-symmetry on arterial bent buckling.
J Biomech. 2023 Aug;157:111735. doi: 10.1016/j.jbiomech.2023.111735. Epub 2023 Jul 20.
6
Critical buckling pressure in mouse carotid arteries with altered elastic fibers.
J Mech Behav Biomed Mater. 2015 Jun;46:69-82. doi: 10.1016/j.jmbbm.2015.02.013. Epub 2015 Feb 28.
7
Mechanical instability of normal and aneurysmal arteries.
J Biomech. 2014 Dec 18;47(16):3868-3875. doi: 10.1016/j.jbiomech.2014.10.010. Epub 2014 Oct 27.
8
Mechanical buckling of artery under pulsatile pressure.
J Biomech. 2012 Apr 30;45(7):1192-8. doi: 10.1016/j.jbiomech.2012.01.035. Epub 2012 Feb 21.
9
Buckling instability in arteries.
J Theor Biol. 2015 Apr 21;371:1-8. doi: 10.1016/j.jtbi.2015.01.039. Epub 2015 Feb 7.
10
A biomechanical model of artery buckling.
J Biomech. 2007;40(16):3672-8. doi: 10.1016/j.jbiomech.2007.06.018. Epub 2007 Aug 8.

引用本文的文献

1
Mechanical characterization and torsional buckling of pediatric cardiovascular materials.
Biomech Model Mechanobiol. 2024 Jun;23(3):845-860. doi: 10.1007/s10237-023-01809-z. Epub 2024 Feb 15.
2
Numerical simulations of the nonsymmetric growth and remodeling of arteries under axial twisting.
J Biomech. 2022 Jul;140:111165. doi: 10.1016/j.jbiomech.2022.111165. Epub 2022 May 27.
3
Mechanics-driven mechanobiological mechanisms of arterial tortuosity.
Sci Adv. 2020 Dec 4;6(49). doi: 10.1126/sciadv.abd3574. Print 2020 Dec.
4
Computational simulations of the helical buckling behavior of blood vessels.
Int J Numer Method Biomed Eng. 2019 Dec;35(12):e3277. doi: 10.1002/cnm.3277. Epub 2019 Nov 27.
6
Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.
Comput Methods Biomech Biomed Engin. 2018 Feb;21(3):219-231. doi: 10.1080/10255842.2018.1439478. Epub 2018 Feb 15.
7
Haemodynamic Recovery Properties of the Torsioned Testicular Artery Lumen.
Sci Rep. 2017 Nov 14;7(1):15570. doi: 10.1038/s41598-017-15680-3.
8
10
Twist buckling of veins under torsional loading.
J Biomech. 2017 Jun 14;58:123-130. doi: 10.1016/j.jbiomech.2017.04.018. Epub 2017 May 5.

本文引用的文献

1
Smooth muscle cell contraction increases the critical buckling pressure of arteries.
J Biomech. 2013 Feb 22;46(4):841-4. doi: 10.1016/j.jbiomech.2012.11.040. Epub 2012 Dec 20.
2
Artery buckling: new phenotypes, models, and applications.
Ann Biomed Eng. 2013 Jul;41(7):1399-410. doi: 10.1007/s10439-012-0707-0. Epub 2012 Nov 29.
3
Twisted blood vessels: symptoms, etiology and biomechanical mechanisms.
J Vasc Res. 2012;49(3):185-97. doi: 10.1159/000335123. Epub 2012 Mar 14.
5
Mechanical buckling of artery under pulsatile pressure.
J Biomech. 2012 Apr 30;45(7):1192-8. doi: 10.1016/j.jbiomech.2012.01.035. Epub 2012 Feb 21.
6
Effects of elastin degradation and surrounding matrix support on artery stability.
Am J Physiol Heart Circ Physiol. 2012 Feb 15;302(4):H873-84. doi: 10.1152/ajpheart.00463.2011. Epub 2011 Dec 9.
7
A Micromechanics Finite-Strain Constitutive Model of Fibrous Tissue.
J Mech Phys Solids. 2011 Sep 1;59(9):1823-1837. doi: 10.1016/j.jmps.2011.05.012.
8
Experimentally validated microstructural 3D constitutive model of coronary arterial media.
J Biomech Eng. 2011 Mar;133(3):031007. doi: 10.1115/1.4003324.
9
The theoretical foundation for artery buckling under internal pressure.
J Biomech Eng. 2009 Dec;131(12):124501. doi: 10.1115/1.4000080.
10
Blood vessel buckling within soft surrounding tissue generates tortuosity.
J Biomech. 2009 Dec 11;42(16):2797-801. doi: 10.1016/j.jbiomech.2009.07.033. Epub 2009 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验