From the Normandie Université, UNICAEN, INSERM, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Caen, France (R.G., M.G., M.N., N.P., C.G., E.E., D.V., T.G.); Commissariat à l'Energie Atomique (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France (J.F., P.H., R.A.-B.); Institut national de la santé et de la recherche médicale (Inserm), UMS 27, Fontenay-aux-Roses, France (J.F.); and Department of Anesthesiology and Critical Care Medicine (C.G.), Department of Neurosurgery (E.E., T.G.), and Department of Clinical Research (D.V.), Caen University Hospital, France.
Stroke. 2017 Aug;48(8):2301-2305. doi: 10.1161/STROKEAHA.117.017014. Epub 2017 May 19.
Subarachnoid hemorrhage (SAH) is a devastating form of stroke with neurological outcomes dependent on the occurrence of delayed cerebral ischemia. It has been shown in rodents that some of the mechanisms leading to delayed cerebral ischemia are related to a decreased circulation of the cerebrospinal fluid (CSF) within the brain parenchyma. Here, we evaluated the cerebral circulation of the CSF in a nonhuman primate in physiological condition and after SAH.
We first evaluated in physiological condition the circulation of the brain CSF in , using magnetic resonance imaging of the temporal DOTA-Gd distribution after its injection into the CSF. Then, animals were subjected to a minimally invasive SAH before an MRI evaluation of the impact of SAH on the brain parenchymal CSF circulation.
We first demonstrate that the CSF actively penetrates the brain parenchyma. Two hours after injection, almost the entire brain is labeled by DOTA-Gd. We also show that our model of SAH in nonhuman primate displays the characteristics of SAH in humans and leads to a dramatic impairment of the brain parenchymal circulation of the CSF.
The CSF actively penetrates within the brain parenchyma in the gyrencephalic brain, as described for the glymphatic system in rodent. This parenchymal CSF circulation is severely impaired by SAH.
蛛网膜下腔出血(SAH)是一种具有破坏性的中风形式,其神经学结果取决于是否发生迟发性脑缺血。在啮齿动物中已经表明,导致迟发性脑缺血的一些机制与脑实质内脑脊液(CSF)循环减少有关。在这里,我们评估了生理状态和蛛网膜下腔出血(SAH)后非人类灵长类动物 CSF 的脑循环。
我们首先使用 CSF 中 DOTA-Gd 分布的磁共振成像,评估生理状态下脑 CSF 的循环。然后,在 MRI 评估 SAH 对脑实质 CSF 循环的影响之前,对动物进行微创性 SAH。
我们首先证明 CSF 可主动穿透脑实质。注射后 2 小时,几乎整个大脑都被 DOTA-Gd 标记。我们还表明,我们的非人类灵长类动物的 SAH 模型显示出与人类 SAH 相同的特征,并导致 CSF 脑实质循环严重受损。
CSF 在脑回脑实质中主动穿透,如在啮齿动物中描述的神经胶质系统一样。SAH 严重损害了这种实质 CSF 循环。