Suppr超能文献

内含子 II 剪接酶:逆转录酶和剪接因子协同作用。

The group II intron maturase: a reverse transcriptase and splicing factor go hand in hand.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.

出版信息

Curr Opin Struct Biol. 2017 Dec;47:30-39. doi: 10.1016/j.sbi.2017.05.002. Epub 2017 May 18.

Abstract

The splicing of group II introns in vivo requires the assistance of a multifunctional intron encoded protein (IEP, or maturase). Each IEP is also a reverse-transcriptase enzyme that enables group II introns to behave as mobile genetic elements. During splicing or retro-transposition, each group II intron forms a tight, specific complex with its own encoded IEP, resulting in a highly reactive holoenzyme. This review focuses on the structural basis for IEP function, as revealed by recent crystal structures of an IEP reverse transcriptase domain and cryo-EM structures of an IEP-intron complex. These structures explain how the same IEP scaffold is utilized for intron recognition, splicing and reverse transcription, while providing a physical basis for understanding the evolutionary transformation of the IEP into the eukaryotic splicing factor Prp8.

摘要

内含子的剪接需要多功能内含子编码蛋白(IEP,或成熟酶)的辅助。每个 IEP 也是一种逆转录酶,使 II 组内含子能够表现为移动遗传元件。在剪接或 retro-transposition 过程中,每个 II 组内含子与其自身编码的 IEP 形成紧密、特异的复合物,形成高度反应性的全酶。本综述重点介绍了最近的 IEP 逆转录酶结构域晶体结构和 IEP-内含子复合物的 cryo-EM 结构揭示的 IEP 功能的结构基础。这些结构解释了相同的 IEP 支架如何用于内含子识别、剪接和逆转录,同时为理解 IEP 向真核剪接因子 Prp8 的进化转变提供了物理基础。

相似文献

引用本文的文献

7
Characterization of two extracellular arabinanases in Lactobacillus crispatus.卷曲乳杆菌中两种胞外阿拉伯聚糖酶的特性分析
Appl Microbiol Biotechnol. 2020 Dec;104(23):10091-10103. doi: 10.1007/s00253-020-10979-0. Epub 2020 Oct 29.

本文引用的文献

3
Forks in the tracks: Group II introns, spliceosomes, telomeres and beyond.路径分歧:II 组内含子、剪接体、端粒及其他
RNA Biol. 2016 Dec;13(12):1218-1222. doi: 10.1080/15476286.2016.1244595. Epub 2016 Oct 11.
4
Molecular architecture of the Saccharomyces cerevisiae activated spliceosome.酿酒酵母激活剪接体的分子结构。
Science. 2016 Sep 23;353(6306):1399-1405. doi: 10.1126/science.aag1906. Epub 2016 Aug 25.
5
Cryo-EM structure of the spliceosome immediately after branching.分支后剪接体的冷冻电镜结构
Nature. 2016 Sep 8;537(7619):197-201. doi: 10.1038/nature19316. Epub 2016 Jul 26.
7
Structure of a yeast activated spliceosome at 3.5 Å resolution.酵母激活剪接体的 3.5Å 分辨率结构。
Science. 2016 Aug 26;353(6302):904-11. doi: 10.1126/science.aag0291. Epub 2016 Jul 21.
8
Group II Intron Self-Splicing.内含子Ⅱ自我剪接。
Annu Rev Biophys. 2016 Jul 5;45:183-205. doi: 10.1146/annurev-biophys-062215-011149.
9
Reverse transcriptases lend a hand in splicing catalysis.逆转录酶有助于剪接催化。
Nat Struct Mol Biol. 2016 Jun 7;23(6):507-9. doi: 10.1038/nsmb.3242.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验