Janel Sébastien, Werkmeister Elisabeth, Bongiovanni Antonino, Lafont Frank, Barois Nicolas
Univ. Lille, CNRS UMR 8204, Inserm U1019, CHU Lille, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France.
Methods Cell Biol. 2017;140:165-185. doi: 10.1016/bs.mcb.2017.03.010. Epub 2017 Apr 21.
Atomic force microscopy (AFM) is becoming increasingly used in the biology field. It can give highly accurate topography and biomechanical quantitative data, such as adhesion, elasticity, and viscosity, on living samples. Nowadays, correlative light electron microscopy is a must-have tool in the biology field that combines different microscopy techniques to spatially and temporally analyze the structure and function of a single sample. Here, we describe the combination of AFM with superresolution light microscopy and electron microscopy. We named this technique correlative light atomic force electron microscopy (CLAFEM) in which AFM can be used on fixed and living cells in association with superresolution light microscopy and further processed for transmission or scanning electron microscopy. We herein illustrate this approach to observe cellular bacterial infection and cytoskeleton. We show that CLAFEM brings complementary information at the cellular level, from on the one hand protein distribution and topography at the nanometer scale and on the other hand elasticity at the piconewton scales to fine ultrastructural details.
原子力显微镜(AFM)在生物学领域的应用越来越广泛。它能够提供高精度的表面形貌以及生物力学定量数据,比如关于活体样本的粘附力、弹性和粘度等数据。如今,相关光电子显微镜是生物学领域的必备工具,它结合了不同的显微镜技术,能够在空间和时间上分析单个样本的结构和功能。在此,我们描述了AFM与超分辨率光学显微镜和电子显微镜的结合。我们将这种技术命名为相关光原子力电子显微镜(CLAFEM),在该技术中,AFM可与超分辨率光学显微镜联合用于固定细胞和活细胞,并进一步用于透射或扫描电子显微镜检查。我们在此阐述这种方法用于观察细胞细菌感染和细胞骨架。我们表明,CLAFEM在细胞水平上带来了互补信息,一方面是纳米尺度的蛋白质分布和表面形貌,另一方面是皮牛顿尺度的弹性,直至精细的超微结构细节。