Kimmerly Derek S
Human Cardiovascular and Exercise Physiology Laboratory, School of Health and Human Performance, Division of Kinesiology, Dalhousie University, Nova Scotia B3H 1T8, Canada.
Auton Neurosci. 2017 Nov;207:10-21. doi: 10.1016/j.autneu.2017.05.008. Epub 2017 May 15.
Effective regulation of central blood volume and arterial pressure is critical for optimal cardiovascular homeostasis. Inadequate regulation of mean arterial pressure has important pathophysiological implications including syncope, end organ damage, and stroke. Such regulation requires appropriate central integration of barosensory afferents and reflex autonomic control of the heart and blood vessels. The neural pathways involved with the baroreflex include brainstem nuclei that receive modulatory input from higher brain centres. Studies in anesthetized animals have highlighted the role of a central autonomic network involved with baroreflex control. The refinement of functional neuroimaging techniques has provided the opportunity to confirm and extend these findings in awake humans. Such methods have provided information about the temporal and spatial neural patterns associated with changes in barosensory afferent activity and reflex autonomic and cardiovascular responses. This review focuses on human neuroimaging investigations that utilized volitional (e.g., respiratory challenges) and/or non-volitional (e.g. lower body suction) methods to study baroreflex control. The cumulative evidence points to the importance of a baroreflex autonomic network that includes the insular cortex, anterior cingulate cortex, medial prefrontal cortex, amygdala and cerebellum. Future work is required to further delineate the brain regions involved specifically with sensing barosensory afferents versus reflex efferent responses. The use of functional electrophysiological imaging techniques (e.g. MEG) may provide an opportunity to: 1) expand the methods and physiologic measures used to study central baroreflex function in humans, and 2) enhance the temporal precision required to delineate the order of activation within higher brain regions involved with baroreflex control.
有效调节中心血容量和动脉血压对于实现最佳心血管稳态至关重要。平均动脉压调节不足具有重要的病理生理意义,包括晕厥、终末器官损伤和中风。这种调节需要对压力感受器传入信号进行适当的中枢整合以及对心脏和血管进行反射性自主控制。与压力反射相关的神经通路包括接受来自高级脑中枢调节性输入的脑干核。对麻醉动物的研究突出了参与压力反射控制的中枢自主神经网络的作用。功能神经成像技术的改进为在清醒人类中证实和扩展这些发现提供了机会。这些方法提供了与压力感受器传入活动变化以及反射性自主和心血管反应相关的时间和空间神经模式信息。本综述重点关注利用自主(如呼吸挑战)和/或非自主(如下半身负压吸引)方法来研究压力反射控制的人类神经成像研究。累积证据表明存在一个压力反射自主神经网络,其包括岛叶皮质、前扣带回皮质、内侧前额叶皮质、杏仁核和小脑。未来的工作需要进一步明确具体参与感知压力感受器传入信号与反射性传出反应的脑区。使用功能性电生理成像技术(如脑磁图)可能提供以下机会:1)扩展用于研究人类中枢压力反射功能的方法和生理测量手段,以及2)提高描绘参与压力反射控制的高级脑区内激活顺序所需的时间精度。
Front Physiol. 2015-9-1
Handb Clin Neurol. 2013
J Am Soc Hypertens. 2010
Appl Physiol Nutr Metab. 2018-7-30
Compr Physiol. 2015-4
Imaging Neurosci (Camb). 2024-2-28
Eur J Appl Physiol. 2025-3
J Headache Pain. 2022-8-19