Suppr超能文献

利用单分子荧光共振能量转移研究剪接体RNA动态变化的方法。

Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET.

作者信息

van der Feltz Clarisse, Hoskins Aaron A

机构信息

Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Biochemistry, 433 Babcock Dr., University of Wisconsin-Madison, Madison, WI 53706, USA.

出版信息

Methods. 2017 Aug 1;125:45-54. doi: 10.1016/j.ymeth.2017.05.011. Epub 2017 May 18.

Abstract

The spliceosome is an extraordinarily dynamic molecular machine in which significant changes in composition as well as protein and RNA conformation are required for carrying out pre-mRNA splicing. Single-molecule fluorescence resonance energy transfer (smFRET) can be used to elucidate these dynamics both in well-characterized model systems and in entire spliceosomes. These types of single-molecule data provide novel information about spliceosome components and can be used to identify sub-populations of molecules with unique behaviors. When smFRET is combined with single-molecule fluorescence colocalization, conformational dynamics can be further linked to the presence or absence of a given spliceosome component. Here, we provide a description of experimental considerations, approaches, and workflows for smFRET with an emphasis on applications for the splicing machinery.

摘要

剪接体是一种极其动态的分子机器,其中进行前体mRNA剪接需要组成以及蛋白质和RNA构象发生显著变化。单分子荧光共振能量转移(smFRET)可用于在特征明确的模型系统和整个剪接体中阐明这些动力学。这类单分子数据提供了有关剪接体成分的新信息,可用于识别具有独特行为的分子亚群。当smFRET与单分子荧光共定位相结合时,构象动力学可以进一步与给定剪接体成分的存在与否联系起来。在这里,我们描述了smFRET的实验考虑因素、方法和工作流程,重点是剪接机制的应用。

相似文献

1
Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET.
Methods. 2017 Aug 1;125:45-54. doi: 10.1016/j.ymeth.2017.05.011. Epub 2017 May 18.
2
New insights into the spliceosome by single molecule fluorescence microscopy.
Curr Opin Chem Biol. 2011 Dec;15(6):864-70. doi: 10.1016/j.cbpa.2011.10.010. Epub 2011 Nov 5.
3
Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines.
Methods Enzymol. 2015;558:539-570. doi: 10.1016/bs.mie.2015.01.009. Epub 2015 Mar 3.
4
Conformational dynamics of stem II of the U2 snRNA.
RNA. 2016 Feb;22(2):225-36. doi: 10.1261/rna.052233.115. Epub 2015 Dec 2.
5
Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome.
Methods Enzymol. 2016;581:257-283. doi: 10.1016/bs.mie.2016.08.022. Epub 2016 Oct 13.
6
Preparation of fluorescent pre-mRNA substrates for an smFRET study of pre-mRNA splicing in yeast.
Methods Enzymol. 2010;472:31-40. doi: 10.1016/S0076-6879(10)72017-6.
7
Lights, camera, action! Capturing the spliceosome and pre-mRNA splicing with single-molecule fluorescence microscopy.
Wiley Interdiscip Rev RNA. 2016 Sep;7(5):683-701. doi: 10.1002/wrna.1358. Epub 2016 May 20.
8
Analysis of complex single-molecule FRET time trajectories.
Methods Enzymol. 2010;472:153-78. doi: 10.1016/S0076-6879(10)72011-5.
9
Single Molecule Cluster Analysis dissects splicing pathway conformational dynamics.
Nat Methods. 2015 Nov;12(11):1077-84. doi: 10.1038/nmeth.3602. Epub 2015 Sep 28.
10
Conformational dynamics of single pre-mRNA molecules during in vitro splicing.
Nat Struct Mol Biol. 2010 Apr;17(4):504-12. doi: 10.1038/nsmb.1767. Epub 2010 Mar 21.

引用本文的文献

3
Biophysical Approaches for the Characterization of Protein-Metabolite Interactions.
Methods Mol Biol. 2023;2554:199-229. doi: 10.1007/978-1-0716-2624-5_13.
4
Single-Molecule FRET Studies of RNA Structural Rearrangements and RNA-RNA Interactions.
Methods Mol Biol. 2022;2518:271-289. doi: 10.1007/978-1-0716-2421-0_16.
5
Transcription Regulation Through Nascent RNA Folding.
J Mol Biol. 2021 Jul 9;433(14):166975. doi: 10.1016/j.jmb.2021.166975. Epub 2021 Apr 1.
6
Optimization and characterization of position-selective labelling of RNA (PLOR) for diverse RNA and DNA sequences.
RNA Biol. 2020 Jul;17(7):1009-1017. doi: 10.1080/15476286.2020.1749797. Epub 2020 Apr 19.
8
Approaches for measuring the dynamics of RNA-protein interactions.
Wiley Interdiscip Rev RNA. 2020 Jan;11(1):e1565. doi: 10.1002/wrna.1565. Epub 2019 Aug 20.
9
Expanding single-molecule fluorescence spectroscopy to capture complexity in biology.
Curr Opin Struct Biol. 2019 Oct;58:233-240. doi: 10.1016/j.sbi.2019.05.005. Epub 2019 Jun 15.
10
Structural and functional analyses of the spliceosome requires a multi-disciplinary approach.
Methods. 2017 Aug 1;125:1-2. doi: 10.1016/j.ymeth.2017.07.022.

本文引用的文献

1
Cryo-EM structure of a human spliceosome activated for step 2 of splicing.
Nature. 2017 Feb 16;542(7641):318-323. doi: 10.1038/nature21079. Epub 2017 Jan 11.
2
Structure of a spliceosome remodelled for exon ligation.
Nature. 2017 Feb 16;542(7641):377-380. doi: 10.1038/nature21078. Epub 2017 Jan 11.
3
Structure of a yeast step II catalytically activated spliceosome.
Science. 2017 Jan 13;355(6321):149-155. doi: 10.1126/science.aak9979. Epub 2016 Dec 15.
4
Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome.
Methods Enzymol. 2016;581:257-283. doi: 10.1016/bs.mie.2016.08.022. Epub 2016 Oct 13.
5
Molecular architecture of the Saccharomyces cerevisiae activated spliceosome.
Science. 2016 Sep 23;353(6306):1399-1405. doi: 10.1126/science.aag1906. Epub 2016 Aug 25.
6
A multi-step model for facilitated unwinding of the yeast U4/U6 RNA duplex.
Nucleic Acids Res. 2016 Dec 15;44(22):10912-10928. doi: 10.1093/nar/gkw686. Epub 2016 Aug 2.
7
Cryo-EM structure of the spliceosome immediately after branching.
Nature. 2016 Sep 8;537(7619):197-201. doi: 10.1038/nature19316. Epub 2016 Jul 26.
8
Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution.
Science. 2016 Aug 26;353(6302):895-904. doi: 10.1126/science.aag2235. Epub 2016 Jul 21.
9
Structure of a yeast activated spliceosome at 3.5 Å resolution.
Science. 2016 Aug 26;353(6302):904-11. doi: 10.1126/science.aag0291. Epub 2016 Jul 21.
10
Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites.
Cell. 2016 Feb 25;164(5):985-98. doi: 10.1016/j.cell.2016.01.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验