Saha Simanto, Ahmed Khawza I, Mostafa Raqibul, Khandoker Ahsan H, Hadjileontiadis Leontios
Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh.
Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, VIC, Australia.
Healthc Technol Lett. 2017 Feb 20;4(1):39-43. doi: 10.1049/htl.2016.0073. eCollection 2017 Feb.
Electroencephalography (EEG) captures electrophysiological signatures of cortical events from the scalp with high-dimensional electrode montages. Usually, excessive sources produce outliers and potentially affect the actual event related sources. Besides, EEG manifests inherent inter-subject variability of the brain dynamics, at the resting state and/or under the performance of task(s), caused probably due to the instantaneous fluctuation of psychophysiological states. A wavelet coherence (WC) analysis for optimally selecting associative inter-subject channels is proposed here and is being used to boost performances of motor imagery (MI)-based inter-subject brain computer interface (BCI). The underlying hypothesis is that optimally associative inter-subject channels can reduce the effects of outliers and, thus, eliminate dissimilar cortical patterns. The proposed approach has been tested on the dataset IVa from BCI competition III, including EEG data acquired from five healthy subjects who were given visual cues to perform 280 trials of MI for the right hand and right foot. Experimental results have shown increased classification accuracy (81.79%) using the WC-based selected 16 channels compared to the one (56.79%) achieved using all the available 118 channels. The associative channels lie mostly around the sensorimotor regions of the brain, reinforced by the previous literature, describing spatial brain dynamics during sensorimotor oscillations. Apparently, the proposed approach paves the way for optimised EEG channel selection that could boost further the efficiency and real-time performance of BCI systems.
脑电图(EEG)通过高维电极导联从头皮捕捉皮层事件的电生理特征。通常,过多的源会产生异常值,并可能影响与实际事件相关的源。此外,EEG在静息状态和/或执行任务时表现出大脑动力学固有的个体间变异性,这可能是由于心理生理状态的瞬时波动所致。本文提出了一种小波相干(WC)分析方法,用于优化选择个体间的关联通道,并将其用于提高基于运动想象(MI)的个体间脑机接口(BCI)的性能。潜在的假设是,最佳关联的个体间通道可以减少异常值的影响,从而消除不同的皮层模式。所提出的方法已在BCI竞赛III的数据集IVa上进行了测试,包括从五名健康受试者获取的EEG数据,这些受试者被给予视觉提示以进行280次右手和右脚的MI试验。实验结果表明,与使用所有118个可用通道所达到的准确率(56.79%)相比,使用基于WC选择的16个通道时分类准确率提高到了81.79%。关联通道大多位于大脑的感觉运动区域周围,先前的文献对此进行了强化,描述了感觉运动振荡期间的空间脑动力学。显然,所提出的方法为优化EEG通道选择铺平了道路,这可以进一步提高BCI系统的效率和实时性能。