Saha Simanto, Baumert Mathias
School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia.
Front Comput Neurosci. 2020 Jan 21;13:87. doi: 10.3389/fncom.2019.00087. eCollection 2019.
Brain computer interfaces (BCI) for the rehabilitation of motor impairments exploit sensorimotor rhythms (SMR) in the electroencephalogram (EEG). However, the neurophysiological processes underpinning the SMR often vary over time and across subjects. Inherent intra- and inter-subject variability causes covariate shift in data distributions that impede the transferability of model parameters amongst sessions/subjects. Transfer learning includes machine learning-based methods to compensate for inter-subject and inter-session (intra-subject) variability manifested in EEG-derived feature distributions as a covariate shift for BCI. Besides transfer learning approaches, recent studies have explored psychological and neurophysiological predictors as well as inter-subject associativity assessment, which may augment transfer learning in EEG-based BCI. Here, we highlight the importance of measuring inter-session/subject performance predictors for generalized BCI frameworks for both normal and motor-impaired people, reducing the necessity for tedious and annoying calibration sessions and BCI training.
用于运动障碍康复的脑机接口(BCI)利用脑电图(EEG)中的感觉运动节律(SMR)。然而,支撑SMR的神经生理过程通常会随时间和个体而变化。个体内部和个体之间固有的变异性会导致数据分布中的协变量偏移,从而阻碍模型参数在不同会话/个体之间的可转移性。迁移学习包括基于机器学习的方法,以补偿在EEG衍生特征分布中表现为BCI协变量偏移的个体间和会话间(个体内部)变异性。除了迁移学习方法外,最近的研究还探索了心理和神经生理预测指标以及个体间关联性评估,这可能会增强基于EEG的BCI中的迁移学习。在这里,我们强调了为正常人和运动障碍者的通用BCI框架测量会话间/个体性能预测指标的重要性,减少了冗长且烦人的校准会话和BCI训练的必要性。