Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Soft Matter. 2017 Jun 7;13(22):4057-4065. doi: 10.1039/c7sm00617a.
Control over the viscoelastic mechanical properties of hydrogels intended for use as biomedical materials has long been a goal of soft matter scientists. Recent research has shown that materials made from polymers with reversibly associating transient crosslinks are a promising strategy for controlling viscoelasticity in hydrogels, for example leading to systems with precisely tunable mechanical energy-dissipation. We and others have shown that bio-inspired histidine:transition metal ion complexes allow highly precise and tunable control over the viscoelastic properties of transient network hydrogels. In this paper, we extend the design of these hydrogels such that their viscoelastic properties respond to longwave UV radiation. We show that careful selection of the histidine:transition metal ion crosslink mixtures allows unique control over pre- and post-UV viscoelastic properties. We anticipate that our strategy for controlling stimuli-responsive viscoelastic properties will aid biomedical materials scientists in the development of soft materials with specific stress-relaxing or energy-dissipating properties.
长期以来,控制用于生物医学材料的水凝胶的黏弹性力学性能一直是软物质科学家的目标。最近的研究表明,由具有可逆缔合的瞬变交联聚合物制成的材料是控制水凝胶黏弹性的一种很有前途的策略,例如可以得到具有精确可调机械能量耗散的系统。我们和其他人已经表明,受生物启发的组氨酸:过渡金属离子配合物允许对瞬变网络水凝胶的黏弹性性质进行高度精确和可调的控制。在本文中,我们扩展了这些水凝胶的设计,使它们的黏弹性性质对长波紫外辐射产生响应。我们表明,仔细选择组氨酸:过渡金属离子交联混合物可以对 UV 前后的黏弹性性质进行独特的控制。我们预计,我们控制刺激响应黏弹性性质的策略将帮助生物医学材料科学家开发具有特定的应力松弛或能量耗散特性的软材料。