Suppr超能文献

通过受生物启发的金属配位动力学控制分级聚合物力学。

Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics.

作者信息

Grindy Scott C, Learsch Robert, Mozhdehi Davoud, Cheng Jing, Barrett Devin G, Guan Zhibin, Messersmith Phillip B, Holten-Andersen Niels

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

Department of Chemistry, University of California, Irvine, California 92697, USA.

出版信息

Nat Mater. 2015 Dec;14(12):1210-6. doi: 10.1038/nmat4401. Epub 2015 Aug 31.

Abstract

In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material's mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided.

摘要

在传统聚合物材料中,机械性能传统上是通过材料结构来设计的,采用诸如聚合物分子量、聚合物支化或嵌段共聚物设计等模式。在此,通过一个由与多个动力学上不同的动态金属-配体配位络合物交联的四臂聚乙二醇水凝胶组成的模型系统,我们表明可以设计出空间结构和机械性能解耦的聚合物材料。通过调整两种类型金属-配体交联的相对浓度,我们展示了在动态机械载荷下对材料能量耗散模式的机械层次结构的控制能力,因此能够通过控制交联类型而非修改聚合物本身来先验地设计这些材料的粘弹性特性。这种将材料力学与结构解耦的策略具有普遍性,可能为用于复杂机械环境的软材料设计提供思路。文中提供了三个证明这一点的例子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验