IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Aug;64(8):1149-1160. doi: 10.1109/TUFFC.2017.2705186. Epub 2017 May 17.
Accurate lateral displacement and strain estimation is critical for some applications of elasticity imaging. Typically, motion estimation in the lateral direction is challenging because of low sampling frequency and lack of phase information in conventional ultrasound imaging. Several approaches have been proposed to improve the performance of lateral estimation, such as lateral interpolation on the radio frequency (RF) signals (Interp_RF), lateral interpolation on the cross-correlation function (Interp_CCF), and lateral interpolation on both the RF signals and cross-correlation function (Interp_Both). In this paper, the estimation performances of the above-mentioned three approaches are compared systematically in simulations and phantom experiments. In the simulations, the root-mean-square error (RMSE) of axial/lateral displacement and strain is utilized to assess the accuracy of motion estimation. In the phantom experiments, the displacement quality metric (DQM), defined as the normalized cross-correlation between the motion-compensated reference frame and the comparison frame, and the contrast-to-noise ratio (CNR) of axial/lateral strain are used as the evaluation criteria. The results show that the three approaches have similar performance in axial estimation. For lateral estimation, if the line density of ultrasound imaging is relatively high (i.e., >4.2 lines/mm), Interp_CCF is comparable to Interp_Both, and Interp_RF performs the worst. However, if the line density is relatively low (i.e., <2.8 lines/mm), Interp_Both performs the best as indicated by the lowest RMSEs or highest DQMs and CNRs in lateral estimation. The trend is consistent at different window sizes, applied strains, and sonographic signal-to-noise ratios (>20 dB). Besides, Interp_Both with a small interpolation factor (e.g., 3-5) is found to obtain the best tradeoff between the estimation accuracy and the computational cost, and thus is suggested for lateral motion estimation in the case of a low line density (i.e., <2.8 lines/mm).
准确的横向位移和应变估计对于弹性成像的某些应用至关重要。通常,由于传统超声成像中的低采样频率和缺少相位信息,横向方向的运动估计具有挑战性。已经提出了几种方法来提高横向估计的性能,例如在射频 (RF) 信号上进行横向插值 (Interp_RF)、在互相关函数上进行横向插值 (Interp_CCF) 以及在 RF 信号和互相关函数上都进行横向插值 (Interp_Both)。在本文中,在模拟和体模实验中系统地比较了上述三种方法的估计性能。在模拟中,利用轴向/横向位移和应变的均方根误差 (RMSE) 来评估运动估计的准确性。在体模实验中,使用位移质量度量 (DQM),定义为运动补偿参考帧与比较帧之间的归一化互相关,以及轴向/横向应变的对比噪声比 (CNR) 作为评估标准。结果表明,三种方法在轴向估计方面具有相似的性能。对于横向估计,如果超声成像的线密度相对较高(即>4.2 线/毫米),Interp_CCF 可与 Interp_Both 相媲美,而 Interp_RF 的性能最差。然而,如果线密度相对较低(即<2.8 线/毫米),则 Interp_Both 的性能最佳,这表现为横向估计中 RMSE 或 DQM 和 CNR 的最低值。该趋势在不同的窗口大小、应用应变和超声信号与噪声比(>20 dB)下是一致的。此外,还发现使用较小的插值因子(例如 3-5)的 Interp_Both 可以在估计精度和计算成本之间获得最佳折衷,因此建议在低线密度(即<2.8 线/毫米)的情况下用于横向运动估计。