Suppr超能文献

使用正则化相关函数的对数压缩提高超声横向应变估计精度。

Improving Ultrasound Lateral Strain Estimation Accuracy using Log Compression of Regularized Correlation Function.

作者信息

Mukaddim Rashid Al, Varghese Tomy

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2031-2034. doi: 10.1109/EMBC44109.2020.9176531.

Abstract

Normalized cross-correlation (NCC) function used in ultrasound strain imaging can get corrupted due to signal decorrelation inducing large displacement errors. Bayesian regularization has been applied in an iterative manner to regularize the NCC function and to reduce estimation variance and peak-hopping errors. However, incorrect choice of the number of iterations can lead to over-regularization errors. In this paper, we propose the use of log compression of regularized NCC function to improve subsample estimation. Performance of parabolic interpolation before and after log compression of the regularized NCC function were compared in numerical simulations of uniform and inclusion phantoms. Significant improvement was achieved with the proposed scheme for lateral estimation results. For example, lateral signal-to-noise ratio (SNR) was 10 dB higher after log compression at 3% strain in a uniform phantom. Lateral contrast-to-noise ratio (CNR) was 1.81 dB higher with proposed method at 3% strain in inclusion phantom. No significant difference was observed in axial estimation due to presence of phase information and high sampling frequency. Our results suggest that this simple approach makes Bayesian regularization robust to over-regularization artifacts.

摘要

超声应变成像中使用的归一化互相关(NCC)函数可能会因信号去相关而导致大的位移误差,从而受到破坏。贝叶斯正则化已被以迭代方式应用,以对NCC函数进行正则化,并减少估计方差和峰值跳跃误差。然而,迭代次数的错误选择可能会导致过正则化误差。在本文中,我们提出使用正则化NCC函数的对数压缩来改善子样本估计。在均匀和包含体模的数值模拟中,比较了正则化NCC函数对数压缩前后的抛物线插值性能。所提出的方案在横向估计结果方面取得了显著改善。例如,在均匀体模中,3%应变下对数压缩后的横向信噪比(SNR)提高了10 dB。在所提出的方法下,在包含体模中3%应变时横向对比噪声比(CNR)提高了1.81 dB。由于存在相位信息和高采样频率,在轴向估计中未观察到显著差异。我们的结果表明,这种简单的方法使贝叶斯正则化对过正则化伪影具有鲁棒性。

相似文献

1
Improving Ultrasound Lateral Strain Estimation Accuracy using Log Compression of Regularized Correlation Function.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:2031-2034. doi: 10.1109/EMBC44109.2020.9176531.
2
Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
Phys Med Biol. 2020 Mar 19;65(6):065008. doi: 10.1088/1361-6560/ab735f.
3
A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography.
Med Phys. 2023 Apr;50(4):2176-2194. doi: 10.1002/mp.16110. Epub 2022 Dec 8.
4
Bayesian regularization applied to ultrasound strain imaging.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1612-20. doi: 10.1109/TBME.2011.2106500. Epub 2011 Jan 17.
5
Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data.
Ultrasound Med Biol. 2009 May;35(5):796-812. doi: 10.1016/j.ultrasmedbio.2008.11.002. Epub 2009 Mar 17.
6
Direct and gradient-based average strain estimation by using weighted nearest neighbor cross-correlation peaks.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1713-28. doi: 10.1109/TUFFC.2012.2376.
8
Analytical Minimization-Based Regularized Subpixel Shear-Wave Tracking for Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):285-296. doi: 10.1109/TUFFC.2018.2885460. Epub 2018 Dec 7.
9
An approach to unbiased subsample interpolation for motion tracking.
Ultrason Imaging. 2013 Apr;35(2):76-87. doi: 10.1177/0161734613476176.
10
Spatiotemporal Bayesian Regularization for Cardiac Strain Imaging: Simulation and Results.
IEEE Open J Ultrason Ferroelectr Freq Control. 2021;1:21-36. doi: 10.1109/OJUFFC.2021.3130021. Epub 2021 Nov 22.

引用本文的文献

1
Spatiotemporal Bayesian Regularization for Cardiac Strain Imaging: Simulation and Results.
IEEE Open J Ultrason Ferroelectr Freq Control. 2021;1:21-36. doi: 10.1109/OJUFFC.2021.3130021. Epub 2021 Nov 22.
2
Bayesian Regularized Strain Imaging for Assessment of Murine Cardiac Function In vivo.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2883-2886. doi: 10.1109/EMBC46164.2021.9630712.

本文引用的文献

1
Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
Phys Med Biol. 2020 Mar 19;65(6):065008. doi: 10.1088/1361-6560/ab735f.
2
Hierarchical Motion Estimation With Bayesian Regularization in Cardiac Elastography: Simulation and In Vivo Validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Nov;66(11):1708-1722. doi: 10.1109/TUFFC.2019.2928546. Epub 2019 Jul 12.
3
GPU Accelerated Multilevel Lagrangian Carotid Strain Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Aug;65(8):1370-1379. doi: 10.1109/TUFFC.2018.2841346. Epub 2018 May 28.
4
Global Time-Delay Estimation in Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Oct;64(10):1625-1636. doi: 10.1109/TUFFC.2017.2717933. Epub 2017 Jun 21.
5
A Systematic Investigation of Lateral Estimation Using Various Interpolation Approaches in Conventional Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Aug;64(8):1149-1160. doi: 10.1109/TUFFC.2017.2705186. Epub 2017 May 17.
6
Robust Tracking of Small Displacements With a Bayesian Estimator.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jan;63(1):20-34. doi: 10.1109/TUFFC.2015.2495111. Epub 2015 Oct 27.
7
An approach to unbiased subsample interpolation for motion tracking.
Ultrason Imaging. 2013 Apr;35(2):76-87. doi: 10.1177/0161734613476176.
8
Bayesian speckle tracking. Part II: biased ultrasound displacement estimation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jan;60(1):144-57. doi: 10.1109/TUFFC.2013.2546.
9
Bayesian speckle tracking. Part I: an implementable perturbation to the likelihood function for ultrasound displacement estimation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jan;60(1):132-43. doi: 10.1109/TUFFC.2013.2545.
10
A fast hybrid algorithm combining regularized motion tracking and predictive search for reducing the occurrence of large displacement errors.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Apr;58(4):730-6. doi: 10.1109/TUFFC.2011.1865.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验