Suppr超能文献

溶剂效应纳入多目标进化算法提高蛋白质结构预测。

Incorporation of Solvent Effect into Multi-Objective Evolutionary Algorithm for Improved Protein Structure Prediction.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1365-1378. doi: 10.1109/TCBB.2017.2705094. Epub 2017 May 17.

Abstract

The problem of predicting the three-dimensional (3-D) structure of a protein from its one-dimensional sequence has been called the "holy grail of molecular biology", and it has become an important part of structural genomics projects. Despite the rapid developments in computer technology and computational intelligence, it remains challenging and fascinating. In this paper, to solve it we propose a multi-objective evolutionary algorithm. We decompose the protein energy function Chemistry at HARvard Macromolecular Mechanics force fields into bond and non-bond energies as the first and second objectives. Considering the effect of solvent, we innovatively adopt a solvent-accessible surface area as the third objective. We use 66 benchmark proteins to verify the proposed method and obtain better or competitive results in comparison with the existing methods. The results suggest the necessity to incorporate the effect of solvent into a multi-objective evolutionary algorithm to improve protein structure prediction in terms of accuracy and efficiency.

摘要

从一维序列预测蛋白质的三维(3-D)结构的问题被称为“分子生物学的圣杯”,它已成为结构基因组学项目的重要组成部分。尽管计算机技术和计算智能发展迅速,但它仍然具有挑战性和吸引力。在本文中,为了解决这个问题,我们提出了一种多目标进化算法。我们将蛋白质能量函数 Chemistry at HARvard Macromolecular Mechanics 力场分解为键能和非键能作为第一和第二目标。考虑到溶剂的影响,我们创新性地采用溶剂可及表面积作为第三个目标。我们使用 66 个基准蛋白来验证所提出的方法,并与现有方法相比获得了更好或更具竞争力的结果。结果表明,有必要将溶剂的影响纳入多目标进化算法中,以提高蛋白质结构预测的准确性和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验