Suppr超能文献

基于差分进化算法训练的具有自适应突触的树突状神经元模型。

A Dendritic Neuron Model with Adaptive Synapses Trained by Differential Evolution Algorithm.

机构信息

Faculty of Engineering, University of Toyama, Toyama-Shi 930-8555, Japan.

School of Electrical and Computer Engineering, Kanazawa University, Kanazawa-Shi 920-1192, Japan.

出版信息

Comput Intell Neurosci. 2020 Jan 17;2020:2710561. doi: 10.1155/2020/2710561. eCollection 2020.

Abstract

A dendritic neuron model with adaptive synapses (DMASs) based on differential evolution (DE) algorithm training is proposed. According to the signal transmission order, a DNM can be divided into four parts: the synaptic layer, dendritic layer, membrane layer, and somatic cell layer. It can be converted to a logic circuit that is easily implemented on hardware by removing useless synapses and dendrites after training. This logic circuit can be designed to solve complex nonlinear problems using only four basic logical devices: comparators, AND (conjunction), OR (disjunction), and NOT (negation). To obtain a faster and better solution, we adopt the most popular DE for DMAS training. We have chosen five classification datasets from the UCI Machine Learning Repository for an experiment. We analyze and discuss the experimental results in terms of the correct rate, convergence rate, ROC curve, and the cross-validation and then compare the results with a dendritic neuron model trained by the backpropagation algorithm (BP-DNM) and a neural network trained by the backpropagation algorithm (BPNN). The analysis results show that the DE-DMAS shows better performance in all aspects.

摘要

提出了一种基于差分进化(DE)算法训练的具有自适应突触的树突神经元模型(DMASs)。根据信号传输顺序,DNM 可分为四个部分:突触层、树突层、膜层和体细胞层。通过在训练后去除无用的突触和树突,可以将其转换为易于在硬件上实现的逻辑电路。该逻辑电路可以设计为仅使用四个基本逻辑设备(比较器、与(逻辑与)、或(逻辑或)和非(逻辑非))来解决复杂的非线性问题。为了获得更快更好的解决方案,我们采用了最流行的 DE 来训练 DMAS。我们从 UCI 机器学习知识库中选择了五个分类数据集进行实验。我们根据正确率、收敛率、ROC 曲线以及交叉验证来分析和讨论实验结果,然后将结果与由反向传播算法(BP-DNM)训练的树突神经元模型和由反向传播算法(BPNN)训练的神经网络进行比较。分析结果表明,DE-DMAS 在各个方面都表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d4/7201754/2cb5d7a3e339/CIN2020-2710561.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验