Suppr超能文献

自组织映射的信息论聚类可视化。

An Information-Theoretic-Cluster Visualization for Self-Organizing Maps.

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Jun;29(6):2595-2613. doi: 10.1109/TNNLS.2017.2699674. Epub 2017 May 17.

Abstract

Improved data visualization will be a significant tool to enhance cluster analysis. In this paper, an information-theoretic-based method for cluster visualization using self-organizing maps (SOMs) is presented. The information-theoretic visualization (IT-vis) has the same structure as the unified distance matrix, but instead of depicting Euclidean distances between adjacent neurons, it displays the similarity between the distributions associated with adjacent neurons. Each SOM neuron has an associated subset of the data set whose cardinality controls the granularity of the IT-vis and with which the first- and second-order statistics are computed and used to estimate their probability density functions. These are used to calculate the similarity measure, based on Renyi's quadratic cross entropy and cross information potential (CIP). The introduced visualizations combine the low computational cost and kernel estimation properties of the representative CIP and the data structure representation of a single-linkage-based grouping algorithm to generate an enhanced SOM-based visualization. The visual quality of the IT-vis is assessed by comparing it with other visualization methods for several real-world and synthetic benchmark data sets. Thus, this paper also contains a significant literature survey. The experiments demonstrate the IT-vis cluster revealing capabilities, in which cluster boundaries are sharply captured. Additionally, the information-theoretic visualizations are used to perform clustering of the SOM. Compared with other methods, IT-vis of large SOMs yielded the best results in this paper, for which the quality of the final partitions was evaluated using external validity indices.

摘要

改进的数据可视化将成为增强聚类分析的重要工具。本文提出了一种基于信息论的自组织映射(SOM)聚类可视化方法。信息论可视化(IT-vis)与统一距离矩阵具有相同的结构,但它不是描绘相邻神经元之间的欧几里得距离,而是显示与相邻神经元相关联的分布之间的相似性。每个 SOM 神经元都有一个与之相关联的数据集子集,其基数控制着 IT-vis 的粒度,以及计算和使用其一阶和二阶统计量来估计它们的概率密度函数。这些用于基于 Renyi 的二次交叉熵和交叉信息势(CIP)计算相似性度量。所提出的可视化方法结合了代表性 CIP 的低计算成本和核估计特性以及基于单链接分组算法的数据结构表示,以生成增强的基于 SOM 的可视化。通过将其与其他几种真实世界和合成基准数据集的可视化方法进行比较,评估了 IT-vis 的视觉质量。因此,本文还包含了一个重要的文献调查。实验表明,IT-vis 具有很好的聚类揭示能力,可以清晰地捕捉到聚类边界。此外,信息论可视化还用于执行 SOM 的聚类。与其他方法相比,本文中的 IT-vis 对大型 SOM 产生了最佳结果,使用外部有效性指标评估了最终分区的质量。

相似文献

1
An Information-Theoretic-Cluster Visualization for Self-Organizing Maps.自组织映射的信息论聚类可视化。
IEEE Trans Neural Netw Learn Syst. 2018 Jun;29(6):2595-2613. doi: 10.1109/TNNLS.2017.2699674. Epub 2017 May 17.
3
Advanced visualization of self-organizing maps with vector fields.利用向量场对自组织映射进行高级可视化。
Neural Netw. 2006 Jul-Aug;19(6-7):911-22. doi: 10.1016/j.neunet.2006.05.013. Epub 2006 Jun 19.
4
SOMKE: kernel density estimation over data streams by sequences of self-organizing maps.序列自组织映射的数据流核密度估计
IEEE Trans Neural Netw Learn Syst. 2012 Aug;23(8):1254-68. doi: 10.1109/TNNLS.2012.2201167.
6
Topology-based hierarchical clustering of self-organizing maps.基于拓扑结构的自组织映射分层聚类
IEEE Trans Neural Netw. 2011 Mar;22(3):474-85. doi: 10.1109/TNN.2011.2107527.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验