Suppr超能文献

基于体素的磁共振成像数据分析对复发性脑胶质母细胞瘤与迟发性放射性坏死的鉴别诊断。

Differentiation of Recurrent Glioblastoma from Delayed Radiation Necrosis by Using Voxel-based Multiparametric Analysis of MR Imaging Data.

机构信息

From the Department of Radiology, Catholic Kwandong University College of Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea (R.G.Y.); Department of Radiology, Jeju National University Hospital, Jeju, Korea (M.J.G.); Department of Radiology and Research Institute of Radiology (H.S.K., W.H.S., S.C.J., S.J.K.) and Department of Neurosurgery (J.H.K.), University of Ulsan College of Medicine, Asan Medical Center, 86 Asanbyeongwon-Gil, Songpa-Gu, Seoul 138-736, Korea.

出版信息

Radiology. 2017 Oct;285(1):206-213. doi: 10.1148/radiol.2017161588. Epub 2017 May 23.

Abstract

Purpose To assess a volume-weighted voxel-based multiparametric (MP) clustering method as an imaging biomarker to differentiate recurrent glioblastoma from delayed radiation necrosis. Materials and Methods The institutional review board approved this retrospective study and waived the informed consent requirement. Seventy-five patients with pathologic analysis-confirmed recurrent glioblastoma (n = 42) or radiation necrosis (n = 33) who presented with enlarged contrast material-enhanced lesions at magnetic resonance (MR) imaging after they completed concurrent chemotherapy and radiation therapy were enrolled. The diagnostic performance of the total MP cluster score was determined by using the area under the receiver operating characteristic curve (AUC) with cross-validation and compared with those of single parameter measurements (10% histogram cutoffs of apparent diffusion coefficient [ADC10] or 90% histogram cutoffs of normalized cerebral blood volume and initial time-signal intensity AUC). Results Receiver operating characteristic curve analysis showed that an AUC for differentiating recurrent glioblastoma from delayed radiation necrosis was highest in the total MP cluster score and lowest for ADC10 for both readers. The total MP cluster score had significantly better diagnostic accuracy than any single parameter (corrected P = .001-.039 for reader 1; corrected P = .005-.041 for reader 2). The total MP cluster score was the best predictor of recurrent glioblastoma (cross-validated AUCs, 0.942-0.946 for both readers), with a sensitivity of 95.2% for reader 1 and 97.6% for reader 2. Conclusion Quantitative analysis with volume-weighted voxel-based MP clustering appears to be superior to the use of single imaging parameters to differentiate recurrent glioblastoma from delayed radiation necrosis. RSNA, 2017 Online supplemental material is available for this article.

摘要

目的 评估基于体素的体积加权多参数(MP)聚类方法作为一种成像生物标志物,用于区分复发性胶质母细胞瘤与延迟性放射性坏死。

材料与方法 本回顾性研究经机构审查委员会批准,并豁免了知情同意书的要求。共纳入 75 例经病理分析证实的复发性胶质母细胞瘤(n = 42 例)或放射性坏死(n = 33 例)患者,这些患者在同步放化疗后完成治疗,磁共振成像(MR)显示对比剂增强病灶增大。采用交叉验证的受试者工作特征曲线(ROC)下面积(AUC)来确定总 MP 聚类评分的诊断性能,并与单一参数测量(表观扩散系数 [ADC10]的 10%直方图截断值或标准化脑血容量和初始时间-信号强度 AUC 的 90%直方图截断值)进行比较。

结果 ROC 曲线分析显示,对于区分复发性胶质母细胞瘤与延迟性放射性坏死,读者 1 和读者 2 的总 MP 聚类评分的 AUC 最高,ADC10 的 AUC 最低。总 MP 聚类评分的诊断准确性明显优于任何单一参数(读者 1 校正 P 值 =.001-.039;读者 2 校正 P 值 =.005-.041)。总 MP 聚类评分是预测复发性胶质母细胞瘤的最佳指标(读者 1 和读者 2 的交叉验证 AUC 分别为 0.942-0.946),读者 1 的敏感度为 95.2%,读者 2 的敏感度为 97.6%。

结论 与使用单一成像参数相比,基于体素的体积加权 MP 聚类定量分析似乎更有助于区分复发性胶质母细胞瘤与延迟性放射性坏死。

RSNA,2017 在线补充材料可在本文中获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验