Suppr超能文献

机器学习与脑胶质瘤影像标志物

Machine learning and glioma imaging biomarkers.

机构信息

School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK.

Department of Neuro-oncology, Imperial College Healthcare NHS Trust, Fulham Palace Rd, London W6 8RF, UK.

出版信息

Clin Radiol. 2020 Jan;75(1):20-32. doi: 10.1016/j.crad.2019.07.001. Epub 2019 Jul 29.

Abstract

AIM

To review how machine learning (ML) is applied to imaging biomarkers in neuro-oncology, in particular for diagnosis, prognosis, and treatment response monitoring.

MATERIALS AND METHODS

The PubMed and MEDLINE databases were searched for articles published before September 2018 using relevant search terms. The search strategy focused on articles applying ML to high-grade glioma biomarkers for treatment response monitoring, prognosis, and prediction.

RESULTS

Magnetic resonance imaging (MRI) is typically used throughout the patient pathway because routine structural imaging provides detailed anatomical and pathological information and advanced techniques provide additional physiological detail. Using carefully chosen image features, ML is frequently used to allow accurate classification in a variety of scenarios. Rather than being chosen by human selection, ML also enables image features to be identified by an algorithm. Much research is applied to determining molecular profiles, histological tumour grade, and prognosis using MRI images acquired at the time that patients first present with a brain tumour. Differentiating a treatment response from a post-treatment-related effect using imaging is clinically important and also an area of active study (described here in one of two Special Issue publications dedicated to the application of ML in glioma imaging).

CONCLUSION

Although pioneering, most of the evidence is of a low level, having been obtained retrospectively and in single centres. Studies applying ML to build neuro-oncology monitoring biomarker models have yet to show an overall advantage over those using traditional statistical methods. Development and validation of ML models applied to neuro-oncology require large, well-annotated datasets, and therefore multidisciplinary and multi-centre collaborations are necessary.

摘要

目的

综述机器学习(ML)在神经肿瘤学中的影像学生物标志物中的应用,特别是在诊断、预后和治疗反应监测方面。

材料与方法

使用相关检索词,检索了 2018 年 9 月前在 PubMed 和 MEDLINE 数据库发表的文章。检索策略主要集中在将 ML 应用于高级别胶质瘤生物标志物以监测治疗反应、预后和预测的文章。

结果

磁共振成像(MRI)通常在整个患者治疗过程中使用,因为常规结构成像提供了详细的解剖和病理信息,而先进的技术则提供了额外的生理细节。通过仔细选择图像特征,ML 经常用于在各种场景中进行准确分类。ML 不仅通过算法来识别图像特征,而不是由人工选择。大量研究致力于利用患者首次出现脑肿瘤时采集的 MRI 图像确定分子谱、组织学肿瘤分级和预后。通过影像学来区分治疗反应和治疗后相关效应在临床上非常重要,也是一个活跃的研究领域(在两个专门讨论 ML 在胶质瘤成像中应用的特刊出版物之一中对此进行了描述)。

结论

尽管具有开创性,但大多数证据水平较低,都是通过回顾性研究和单中心研究获得的。将 ML 应用于构建神经肿瘤学监测生物标志物模型的研究尚未显示出比传统统计学方法总体上更具优势。ML 模型在神经肿瘤学中的开发和验证需要大型、注释良好的数据集,因此需要多学科和多中心的合作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验