Rojas José M, Gavilán Helena, Del Dedo Vanesa, Lorente-Sorolla Eduardo, Sanz-Ortega Laura, da Silva Gustavo B, Costo Rocío, Perez-Yagüe Sonia, Talelli Marina, Marciello Marzia, Morales M Puerto, Barber Domingo F, Gutiérrez Lucía
Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación en Sanidad Animal (CISA-INIA), Ctra. de Algete a El Casar s/n, Valdeolmos, 28130 Madrid, Spain.
Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.
Acta Biomater. 2017 Aug;58:181-195. doi: 10.1016/j.actbio.2017.05.047. Epub 2017 May 20.
UNLABELLED: To successfully develop biomedical applications for magnetic nanoparticles, it is imperative that these nanoreagents maintain their magnetic properties in vivo and that their by-products are safely metabolized. When placed in biological milieu or internalized into cells, nanoparticle aggregation degree can increase which could affect magnetic properties and metabolization. To evaluate these aggregation effects, we synthesized citric acid-coated iron oxide nanoparticles whose magnetic susceptibility can be modified by aggregation in agar dilutions and dextran-layered counterparts that maintain their magnetic properties unchanged. Macrophage models were used for in vitro uptake and metabolization studies, as these cells control iron homeostasis in the organism. Electron microscopy and magnetic susceptibility studies revealed a cellular mechanism of nanoparticle degradation, in which a small fraction of the particles is rapidly degraded while the remaining ones maintain their size. Both nanoparticle types produced similar iron metabolic profiles but these profiles differed in each macrophage model. Thus, nanoparticles induced iron responses that depended on macrophage programming. In vivo studies showed that nanoparticles susceptible to changes in magnetic properties through aggregation effects had different behavior in lungs, liver and spleen. Liver ferritin levels increased in these animals showing that nanoparticles are degraded and their by-products incorporated into normal metabolic routes. These data show that nanoparticle iron metabolization depends on cell type and highlight the necessity to assess nanoparticle aggregation in complex biological systems to develop effective in vivo biomedical applications. STATEMENT OF SIGNIFICANCE: Magnetic iron oxide nanoparticles have great potential for biomedical applications. It is however imperative that these nanoreagents preserve their magnetic properties once inoculated, and that their degradation products can be eliminated. When placed in a biological milieu nanoparticles can aggregate and this can affect their magnetic properties and their degradation. In this work, we showed that iron oxide nanoparticles trigger the iron metabolism in macrophages, the main cell type involved in iron homeostasis in the organism. We also show that aggregation can affect nanoparticle magnetic properties when inoculated in animal models. This work confirms iron oxide nanoparticle biocompatibility and highlights the necessity to assess in vivo nanoparticle aggregation to successfully develop biomedical applications.
未标注:为了成功开发用于磁性纳米颗粒的生物医学应用,这些纳米试剂必须在体内保持其磁性,并且其副产物能够被安全代谢。当置于生物环境中或内化到细胞中时,纳米颗粒的聚集程度会增加,这可能会影响磁性和代谢。为了评估这些聚集效应,我们合成了柠檬酸包覆的氧化铁纳米颗粒,其磁化率可通过在琼脂稀释液中的聚集进行调节,以及葡聚糖层包覆的对应物,其磁性保持不变。巨噬细胞模型用于体外摄取和代谢研究,因为这些细胞控制着机体中的铁稳态。电子显微镜和磁化率研究揭示了纳米颗粒降解的细胞机制,其中一小部分颗粒迅速降解,而其余颗粒保持其大小。两种纳米颗粒类型产生了相似的铁代谢谱,但这些谱在每个巨噬细胞模型中有所不同。因此,纳米颗粒诱导的铁反应取决于巨噬细胞的编程。体内研究表明,通过聚集效应易受磁性变化影响的纳米颗粒在肺、肝和脾中的行为不同。这些动物的肝脏铁蛋白水平升高,表明纳米颗粒被降解,其副产物被纳入正常代谢途径。这些数据表明纳米颗粒铁代谢取决于细胞类型,并强调了在复杂生物系统中评估纳米颗粒聚集以开发有效的体内生物医学应用的必要性。 重要性声明:磁性氧化铁纳米颗粒在生物医学应用方面具有巨大潜力。然而,这些纳米试剂一旦接种后必须保持其磁性,并且其降解产物能够被清除。当置于生物环境中时,纳米颗粒会聚集,这会影响其磁性和降解。在这项工作中,我们表明氧化铁纳米颗粒触发了巨噬细胞中的铁代谢,巨噬细胞是机体中参与铁稳态的主要细胞类型。我们还表明,接种到动物模型中时,聚集会影响纳米颗粒的磁性。这项工作证实了氧化铁纳米颗粒的生物相容性,并强调了评估体内纳米颗粒聚集以成功开发生物医学应用的必要性。
Acta Biomater. 2016-10-1
Mater Sci Eng C Mater Biol Appl. 2017-6-1
Biomed Tech (Berl). 2015-10
Colloids Surf B Biointerfaces. 2017-10-12
Nanoscale. 2015-10-21
J Nanobiotechnology. 2024-1-8
Mater Today Bio. 2023-9-24
Pharmaceuticals (Basel). 2023-8-25
ACS Appl Mater Interfaces. 2023-8-2