文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

不同的磁性纳米粒子涂层决定了它们在静脉注射到小鼠体内 15 个月后的体内降解动力学。

Different coatings on magnetic nanoparticles dictate their degradation kinetics in vivo for 15 months after intravenous administration in mice.

机构信息

Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.

Departamento de Química Analítica, Instituto de Nanociencia Y Materiales de Aragón (INMA), Universidad de Zaragoza, CSIC and CIBER-BBN, 50018, Zaragoza, Spain.

出版信息

J Nanobiotechnology. 2022 Dec 28;20(1):543. doi: 10.1186/s12951-022-01747-5.


DOI:10.1186/s12951-022-01747-5
PMID:36578018
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9795732/
Abstract

BACKGROUND: The surface coating of iron oxide magnetic nanoparticle (MNPs) drives their intracellular trafficking and degradation in endolysosomes, as well as dictating other cellular outcomes. As such, we assessed whether MNP coatings might influence their biodistribution, their accumulation in certain organs and their turnover therein, processes that must be understood in vivo to optimize the design of nanoformulations for specific therapeutic/diagnostic needs. RESULTS: In this study, three different MNP coatings were analyzed, each conferring the identical 12 nm iron oxide cores with different physicochemical characteristics: 3-aminopropyl-triethoxysilane (APS), dextran (DEX), and dimercaptosuccinic acid (DMSA). When the biodistribution of these MNPs was analyzed in C57BL/6 mice, they all mainly accumulated in the spleen and liver one week after administration. The coating influenced the proportion of the MNPs in each organ, with more APS-MNPs accumulating in the spleen and more DMSA-MNPs accumulating in the liver, remaining there until they were fully degraded. The changes in the physicochemical properties of the MNPs (core size and magnetic properties) was also assessed during their intracellular degradation when internalized by two murine macrophage cell lines. The decrease in the size of the MNPs iron core was influenced by their coating and the organ in which they accumulated. Finally, MNP degradation was analyzed in the liver and spleen of C57BL/6 mice from 7 days to 15 months after the last intravenous MNP administration. CONCLUSIONS: The MNPs degraded at different rates depending on the organ and their coating, the former representing the feature that was fundamental in determining the time they persisted. In the liver, the rate of degradation was similar for all three coatings, and it was faster than in the spleen. This information regarding the influence of coatings on the in vivo degradation of MNPs will help to choose the best coating for each biomedical application depending on the specific clinical requirements.

摘要

背景:氧化铁磁性纳米粒子(MNPs)的表面涂层决定了它们在内溶酶体中的细胞内运输和降解,以及其他细胞结果。因此,我们评估了 MNP 涂层是否会影响它们的生物分布、在某些器官中的积累及其在其中的转化,这些过程必须在体内进行理解,以优化针对特定治疗/诊断需求的纳米制剂的设计。

结果:在这项研究中,分析了三种不同的 MNP 涂层,每种涂层都赋予相同的 12nm 氧化铁核,但具有不同的物理化学特性:3-氨丙基三乙氧基硅烷(APS)、葡聚糖(DEX)和二巯基丁二酸(DMSA)。当这些 MNPs 的生物分布在 C57BL/6 小鼠中进行分析时,它们在给药后一周主要积聚在脾脏和肝脏中。涂层影响了 MNPs 在每个器官中的比例,APS-MNPs 更多地积聚在脾脏中,DMSA-MNPs 更多地积聚在肝脏中,直到它们完全降解。还评估了两种小鼠巨噬细胞系内吞后 MNPs 体内降解过程中 MNPs 的物理化学性质(核大小和磁性)的变化。MNPs 核大小的减小受其涂层和积聚的器官影响。最后,在最后一次静脉内 MNP 给药后 7 天至 15 个月,在 C57BL/6 小鼠的肝脏和脾脏中分析了 MNP 降解。

结论:根据器官和涂层的不同,MNPs 的降解速度也不同,前者是决定它们持续时间的基本特征。在肝脏中,三种涂层的降解速度相似,且快于脾脏。关于涂层对 MNPs 体内降解影响的这一信息将有助于根据具体的临床需求,为每个生物医学应用选择最佳的涂层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/6a89bb875016/12951_2022_1747_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/3404f6929197/12951_2022_1747_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/9bd8d4748a8b/12951_2022_1747_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/f08879d5eb21/12951_2022_1747_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/057cd47e335a/12951_2022_1747_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/3817d4ace6f0/12951_2022_1747_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/a5a128629470/12951_2022_1747_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/4b9d009aa9f0/12951_2022_1747_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/9ba63a4c148f/12951_2022_1747_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/39533b90c63f/12951_2022_1747_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/6a89bb875016/12951_2022_1747_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/3404f6929197/12951_2022_1747_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/9bd8d4748a8b/12951_2022_1747_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/f08879d5eb21/12951_2022_1747_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/057cd47e335a/12951_2022_1747_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/3817d4ace6f0/12951_2022_1747_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/a5a128629470/12951_2022_1747_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/4b9d009aa9f0/12951_2022_1747_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/9ba63a4c148f/12951_2022_1747_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/39533b90c63f/12951_2022_1747_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c230/9795732/6a89bb875016/12951_2022_1747_Fig10_HTML.jpg

相似文献

[1]
Different coatings on magnetic nanoparticles dictate their degradation kinetics in vivo for 15 months after intravenous administration in mice.

J Nanobiotechnology. 2022-12-28

[2]
The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type.

Biomaterials. 2022-2

[3]
Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications.

J Control Release. 2013-7-29

[4]
Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas.

ACS Appl Mater Interfaces. 2021-2-24

[5]
Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.

Nanotechnology. 2011-11-23

[6]
Biodistribution and biocompatibility of DMSA-stabilized maghemite magnetic nanoparticles in nonhuman primates (Cebus spp.).

Nanomedicine (Lond). 2011-6-15

[7]
A value-added exopolysaccharide as a coating agent for MRI nanoprobes.

Nanoscale. 2015-9-14

[8]
Influence of chitosan coating on magnetic nanoparticles in endothelial cells and acute tissue biodistribution.

J Biomater Sci Polym Ed. 2016-6-2

[9]
Magnetic properties of nanoparticles as a function of their spatial distribution on liposomes and cells.

Phys Chem Chem Phys. 2018-6-20

[10]
Inducing cell cycle arrest and apoptosis by dimercaptosuccinic acid modified Fe3O4 magnetic nanoparticles combined with nontoxic concentration of bortezomib and gambogic acid in RPMI-8226 cells.

Int J Nanomedicine. 2015-4-30

引用本文的文献

[1]
A minimally invasive thrombotic model to study stroke in awake mice.

Nat Commun. 2025-5-10

[2]
Nanoscintillator Coating: A Key Parameter That Strongly Impacts Internalization, Biocompatibility, and Therapeutic Efficacy in Pancreatic Cancer Models.

Small Sci. 2024-3-28

[3]
Computational modeling of superparamagnetic nanoparticle-based (affinity) diagnostics.

Front Bioeng Biotechnol. 2024-12-6

[4]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[5]
Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell-Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State.

Small. 2025-1

[6]
Elucidating the Dynamics of Biodegradation and Biosynthesis of Magnetic Nanoparticles in Human Stem Cells.

Small. 2024-12

[7]
Roadmap on magnetic nanoparticles in nanomedicine.

Nanotechnology. 2024-11-5

[8]
Temporal and spatial resolution of magnetosome degradation at the subcellular level in a 3D lung carcinoma model.

J Nanobiotechnology. 2024-9-2

[9]
Toxicity and magnetometry evaluation of the uptake of core-shell maghemite-silica nanoparticles by neuroblastoma cells.

R Soc Open Sci. 2024-6-19

[10]
Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures.

J Funct Biomater. 2024-6-19

本文引用的文献

[1]
Iron Speciation in Animal Tissues Using AC Magnetic Susceptibility Measurements: Quantification of Magnetic Nanoparticles, Ferritin, and Other Iron-Containing Species.

ACS Appl Bio Mater. 2022-5-16

[2]
In Vivo Assimilation of CuS, Iron Oxide and Iron Oxide@CuS Nanoparticles in Mice: A 6-Month Follow-Up Study.

Pharmaceutics. 2022-1-13

[3]
The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type.

Biomaterials. 2022-2

[4]
Recent Progress in Iron Oxide Nanoparticles as Therapeutic Magnetic Agents for Cancer Treatment and Tissue Engineering.

ACS Appl Bio Mater. 2020-12-21

[5]
Magnetic Nanoparticles for Biomedical Applications: From the Soul of the Earth to the Deep History of Ourselves.

ACS Appl Bio Mater. 2021-8-16

[6]
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation.

Cancers (Basel). 2021-9-12

[7]
Long-Term Fate of Magnetic Particles in Mice: A Comprehensive Study.

ACS Nano. 2021-7-27

[8]
Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization.

Beilstein J Nanotechnol. 2021-3-23

[9]
Critical Parameters to Improve Pancreatic Cancer Treatment Using Magnetic Hyperthermia: Field Conditions, Immune Response, and Particle Biodistribution.

ACS Appl Mater Interfaces. 2021-3-24

[10]
Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas.

ACS Appl Mater Interfaces. 2021-2-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索