Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Okinawa Institute of Science, Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
Sci Rep. 2017 May 23;7(1):2257. doi: 10.1038/s41598-017-02499-1.
Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI-MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems.
虽然了解它们的化学组成对于准确预测多组分药物、营养保健品和食品的生物活性至关重要,但目前还没有分析方法可以从多种共存因素的复杂行为中轻松预测多组分系统的生物活性。本文提出了一种代谢谱(MP)策略,用于评估包含各种小分子的系统中的生物活性。通过高通量、非靶向分析程序获得了来自 21 个绿茶提取物(GTE)面板的各种生物活性草药样品的组成谱。该方法采用基质辅助激光解吸电离质谱(MALDI-MS)技术,使用 1,5-二氨基萘(1,5-DAN)作为光学基质来检测 GTE 衍生成分。多变量统计分析揭示了 GTE 在抗氧化活性、氧自由基吸收能力(ORAC)方面的差异。构建了一个可靠的生物活性预测模型,用于根据其组成平衡预测不同 GTE 的 ORAC。这种化学计量学方法允许通过多组分而不是单一组分信息来评估 GTE 的生物活性。通过计算对构建预测模型贡献最大的几个选定成分的总和丰度,可以轻松评估生物活性。使用多种生物活性样品面板的 1,5-DAN-MALDI-MS-MP 代表了一种有前途的筛选生物活性预测性多组分因素和选择有效生物活性预测性化学组合的策略,用于粗多组分系统。