Yukihira Daichi, Miura Daisuke, Fujimura Yoshinori, Umemura Yoshikatsu, Yamaguchi Shinichi, Funatsu Shinji, Yamazaki Makoto, Ohta Tetsuya, Inoue Hiroaki, Shindo Mitsuru, Wariishi Hiroyuki
Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
J Am Soc Mass Spectrom. 2014 Jan;25(1):1-5. doi: 10.1007/s13361-013-0772-0. Epub 2013 Nov 19.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) experiments require a suitable match of the matrix and target compounds to achieve a selective and sensitive analysis. However, it is still difficult to predict which metabolites are ionizable with a given matrix and which factors lead to an efficient ionization. In the present study, we extracted structural properties of metabolites that contribute to their ionization in MALDI-MS analyses exploiting our experimental data set. The MALDI-MS experiment was performed for 200 standard metabolites using 9-aminoacridine (9-AA) as the matrix. We then developed a prediction model for the ionization profiles (both the ionizability and ionization efficiency) of metabolites using a quantitative structure-property relationship (QSPR) approach. The classification model for the ionizability achieved a 91% accuracy, and the regression model for the ionization efficiency reached a rank correlation coefficient of 0.77. An analysis of the descriptors contributing to such model construction suggested that the proton affinity is a major determinant of the ionization, whereas some substructures hinder efficient ionization. This study will lead to the development of more rational and predictable MALDI-MS analyses.
基质辅助激光解吸/电离质谱(MALDI-MS)实验需要基质与目标化合物进行适当匹配,以实现选择性和灵敏性分析。然而,仍然难以预测哪些代谢物可被给定基质电离以及哪些因素导致高效电离。在本研究中,我们利用实验数据集提取了有助于代谢物在MALDI-MS分析中电离的结构性质。使用9-氨基吖啶(9-AA)作为基质对200种标准代谢物进行了MALDI-MS实验。然后,我们采用定量结构-性质关系(QSPR)方法建立了代谢物电离谱(包括可电离性和电离效率)的预测模型。可电离性的分类模型准确率达到91%,电离效率的回归模型秩相关系数达到0.77。对有助于此类模型构建的描述符进行分析表明,质子亲和力是电离的主要决定因素,而一些子结构会阻碍高效电离。本研究将推动更合理、可预测的MALDI-MS分析的发展。