Suppr超能文献

光诱导自旋态转换过程中波包色散的相干结构俘获。

Coherent structural trapping through wave packet dispersion during photoinduced spin state switching.

机构信息

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

SwissFEL, Paul Scherrer Institut, Villigen PSI 5232, Switzerland.

出版信息

Nat Commun. 2017 May 24;8:15342. doi: 10.1038/ncomms15342.

Abstract

The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)] compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.

摘要

描述分子光转化过程中的超快非绝热化学动力学仍然具有挑战性,因为电子和核构象相互影响,不能独立处理。在这里,我们通过亚 30 飞秒分辨率和高信噪比的时间分辨 X 射线吸收光谱,超越玻恩-奥本海默近似,获得了对原型 [Fe(bpy)] 化合物的光诱导自旋态俘获动力学的实验洞察力。从初始光激发电子态向高自旋态的电子衰减与结构俘获动力学区分开来,结构俘获动力学引发了一个相干的振荡波包(265fs 周期),这一现象被明确地识别为分子呼吸。在整个结构俘获过程中,波包沿着反应坐标的色散揭示了分子内振子耦合的细节,随后才是较慢的振动能量向溶液环境的耗散。这些发现说明了现代时间分辨 X 射线吸收光谱如何提供关键信息来揭示光功能分子的动态细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac3f/5458100/11f5dd014fc3/ncomms15342-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验