Suppr超能文献

Boosting the Performance of Genetic Algorithms for Variable Selection in Partial Least Squares Spectral Calibrations.

作者信息

Lavine Barry K, White Collin G

机构信息

Department of Chemistry, Oklahoma State University, Stillwater, OK, USA.

出版信息

Appl Spectrosc. 2017 Sep;71(9):2092-2101. doi: 10.1177/0003702817713501. Epub 2017 Jun 15.

Abstract

A genetic algorithm (GA) for variable selection in partial least squares (PLS) regression that incorporates adaptive boosting to identify informative wavelengths in near-infrared (NIR) spectra has been developed. Three studies demonstrating the advantages of incorporating an adaptive boosting routine into a GA that employs the root mean square error of calibration as its fitness function are highlighted: (1) prediction of hydroxyl number of terpolymers from NIR diffuse reflectance spectra; (2) calibration of acetone from NIR transmission spectra of mixtures of water, acetone, t-butyl alcohol and isopropyl alcohol; and (3) determination of the active pharmaceutical ingredients in drug tablets from NIR diffuse reflectance spectra. The performance of the GA with adaptive boosting to select wavelengths was compared with one without adaptive boosting. For all three NIR data sets, variable selected PLS models developed by a GA with adaptive boosting performed better. Analysis of the wavelengths selected by the GA with adaptive boosting also demonstrate that chemical information indicative of the analyte was captured by the selected wavelengths.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验