Ding Qing, Zhao Tiehong
College of Mathematics and Statistics, Hunan University of Finance and Economics, Changsha, 410205 China.
Department of Mathematics, Hangzhou Normal University, Hangzhou, 311121 China.
J Inequal Appl. 2017;2017(1):102. doi: 10.1186/s13660-017-1365-4. Epub 2017 May 5.
In this paper, we find the greatest values [Formula: see text] and the smallest values [Formula: see text] such that the double inequalities [Formula: see text] and [Formula: see text] hold for all [Formula: see text] with [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are the arithmetic-geometric, Toader and generalized logarithmic means of two positive numbers and , respectively.
在本文中,我们找到了最大值[公式:见正文]和最小值[公式:见正文],使得双重不等式[公式:见正文]和[公式:见正文]对于所有满足[公式:见正文]的[公式:见正文]都成立,其中[公式:见正文]、[公式:见正文]和[公式:见正文]分别是两个正数[公式:见正文]和[公式:见正文]的算术 - 几何均值、托阿德均值和广义对数均值。