Suppr超能文献

关于加权均值的凯德莱亚型不等式。

On Kedlaya-type inequalities for weighted means.

作者信息

Páles Zsolt, Pasteczka Paweł

机构信息

1Institute of Mathematics, University of Debrecen, Debrecen, Hungary.

2Institute of Mathematics, Pedagogical University of Cracow, Cracow, Poland.

出版信息

J Inequal Appl. 2018;2018(1):99. doi: 10.1186/s13660-018-1685-z. Epub 2018 Apr 25.

Abstract

In 2016 we proved that for every symmetric, repetition invariant and Jensen concave mean [Formula: see text] the Kedlaya-type inequality [Formula: see text] holds for an arbitrary [Formula: see text] ([Formula: see text] stands for the arithmetic mean). We are going to prove the weighted counterpart of this inequality. More precisely, if [Formula: see text] is a vector with corresponding (non-normalized) weights [Formula: see text] and [Formula: see text] denotes the weighted mean then, under analogous conditions on [Formula: see text], the inequality [Formula: see text] holds for every [Formula: see text] and [Formula: see text] such that the sequence [Formula: see text] is decreasing.

摘要

2016年,我们证明了对于每一个对称、重复不变且詹森凹平均[公式:见正文],对于任意的[公式:见正文]([公式:见正文]表示算术平均),凯德莱亚型不等式[公式:见正文]成立。我们将证明这个不等式的加权形式。更确切地说,如果[公式:见正文]是一个向量,其对应的(未归一化)权重为[公式:见正文],并且[公式:见正文]表示加权平均,那么在对[公式:见正文]的类似条件下,对于每一个[公式:见正文]和[公式:见正文],使得序列[公式:见正文]递减时,不等式[公式:见正文]成立。

相似文献

1
On Kedlaya-type inequalities for weighted means.关于加权均值的凯德莱亚型不等式。
J Inequal Appl. 2018;2018(1):99. doi: 10.1186/s13660-018-1685-z. Epub 2018 Apr 25.
5
Inequalities on an extended Bessel function.关于一个扩展贝塞尔函数的不等式。
J Inequal Appl. 2018;2018(1):66. doi: 10.1186/s13660-018-1656-4. Epub 2018 Mar 27.
6
Hardy-type inequalities in fractional -discrete calculus.分数阶离散微积分中的哈代型不等式
J Inequal Appl. 2018;2018(1):73. doi: 10.1186/s13660-018-1662-6. Epub 2018 Apr 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验