Páles Zsolt, Pasteczka Paweł
1Institute of Mathematics, University of Debrecen, Debrecen, Hungary.
2Institute of Mathematics, Pedagogical University of Cracow, Cracow, Poland.
J Inequal Appl. 2018;2018(1):99. doi: 10.1186/s13660-018-1685-z. Epub 2018 Apr 25.
In 2016 we proved that for every symmetric, repetition invariant and Jensen concave mean [Formula: see text] the Kedlaya-type inequality [Formula: see text] holds for an arbitrary [Formula: see text] ([Formula: see text] stands for the arithmetic mean). We are going to prove the weighted counterpart of this inequality. More precisely, if [Formula: see text] is a vector with corresponding (non-normalized) weights [Formula: see text] and [Formula: see text] denotes the weighted mean then, under analogous conditions on [Formula: see text], the inequality [Formula: see text] holds for every [Formula: see text] and [Formula: see text] such that the sequence [Formula: see text] is decreasing.
2016年,我们证明了对于每一个对称、重复不变且詹森凹平均[公式:见正文],对于任意的[公式:见正文]([公式:见正文]表示算术平均),凯德莱亚型不等式[公式:见正文]成立。我们将证明这个不等式的加权形式。更确切地说,如果[公式:见正文]是一个向量,其对应的(未归一化)权重为[公式:见正文],并且[公式:见正文]表示加权平均,那么在对[公式:见正文]的类似条件下,对于每一个[公式:见正文]和[公式:见正文],使得序列[公式:见正文]递减时,不等式[公式:见正文]成立。