Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
Nanoscale. 2017 Jun 8;9(22):7674-7685. doi: 10.1039/c7nr02174g.
Strategically, a series of five angular "V" shaped naphthalimide AIEEgens with varying pendant chains (butyl, hexyl, octyl, cyclohexyl and methylcyclohexyl) have been synthesized to fine-tune their nanomorphological and photophysical properties. With similar aromatic cores and electronic states, unexpected tuning of the condensed state emission colors and nanomorphologies (reproducible on any kind of surface) of naphthalimides has been achieved for the first time simply by varying their side chains. Conclusive analysis by various spectroscopic techniques (SC-XRD, powder-XRD, DLS, FESEM) and DFT computational studies confirmed the full control of the pendant chain (in terms of bulkiness around the naphthalimide core, which restricts the ease of intermolecular π-π interactions) over the nanoaggregate morphology and solid state emissive properties of the AIEEgens; this can be rationalized to all aggregation-prone systems. These comprehensive studies establish a conceptually unique yet simple and effective method to precisely tune the nanomorphologies and the emission colors of aggregation-prone small organic molecules by judicious choice of the non-conjugated pendant chain. Thus, considering the prime role of the active layer nanomorphology in all organic optoelectronic devices, this methodology may emerge as a promising tool to improve device performance. Among all the congeners, the hexyl chain-containing congener (HNQ) forms well-defined nanoribbons with smaller diameters (as confirmed from DLS: 166 nm and FESEM: 150 nm) and provides a larger surface area. Consequently, the HNQ-nanoribbons were employed as a fluorescent sensor for the discriminative detection of trinitrophenol (TNP) in pure aqueous media. FE-SEM images revealed that, upon gradual addition of TNP (10 nM to 100 μM), these nanoribbons undergo an aggregation/disaggregation process, forming non-fluorescent co-aggregates with TNP, and provide highly enhanced sensitivity compared to existing state-of-the-art on aggregation-prone systems. Fluorescence titration studies confirmed that HNQ can detect the presence of TNP as low as 16.8 ppb and can serve as a cost-effective portable device incorporated with UV-light for on-site visual detection of TNP, even in the presence of potentially competing nitroaromatic compounds.
从策略上讲,我们合成了一系列具有不同侧链(丁基、己基、辛基、环己基和甲基环己基)的五个角状“V”形萘酰亚胺 AIEEgen,以调整其纳米形态和光物理性质。由于具有相似的芳核和电子状态,我们首次通过改变侧链,成功地实现了萘酰亚胺凝聚态发射颜色和纳米形态(可在任何类型的表面重现)的意外调谐。通过各种光谱技术(SC-XRD、粉末-XRD、DLS、FESEM)和 DFT 计算研究的结论性分析证实,通过侧链(围绕萘酰亚胺核的体积大小,限制了分子间 π-π 相互作用的容易程度)对纳米聚集体形态和 AIEEgen 的固态发光性质的完全控制;这可以合理化所有倾向于聚集的系统。这些综合研究建立了一种概念独特但简单有效的方法,可以通过明智地选择非共轭侧链,精确地调节易于聚集的小分子的纳米形态和发射颜色。因此,考虑到有源层纳米形态在所有有机光电设备中的重要作用,这种方法可能成为提高设备性能的有前途的工具。在所有同系物中,含有己基链的同系物(HNQ)形成具有较小直径的规则纳米带(通过 DLS 确认:166nm 和 FESEM:150nm),并提供更大的表面积。因此,HNQ-纳米带被用作荧光传感器,用于在纯水溶液中对三硝基苯酚(TNP)进行有区别的检测。FE-SEM 图像显示,随着 TNP(从 10 nM 到 100 μM)的逐渐加入,这些纳米带经历了聚集/解聚集过程,与 TNP 形成非荧光共聚物,与现有基于聚集的系统相比,提供了更高的灵敏度。荧光滴定研究证实,HNQ 可以检测到低至 16.8ppb 的 TNP 存在,并可以作为一种具有成本效益的便携式设备,与紫外光结合,用于现场视觉检测 TNP,即使存在潜在的竞争硝基芳烃化合物也是如此。