Suppr超能文献

线粒体逆向加工促进了rpl5在禾本科植物中向细胞核的功能转移。

Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses.

作者信息

Wu Zhiqiang, Sloan Daniel B, Brown Colin W, Rosenblueth Mónica, Palmer Jeffrey D, Ong Han Chuan

机构信息

Department of Biology, Colorado State University, Fort Collins, CO.

Institute for Cellular and Molecular Biology, University of Texas, Austin, TX.

出版信息

Mol Biol Evol. 2017 Sep 1;34(9):2340-2354. doi: 10.1093/molbev/msx170.

Abstract

Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.

摘要

在被子植物中,从线粒体到细胞核的功能性基因转移仍在进行,并且所有15个核糖体蛋白基因都反复发生了这种转移,但尚不清楚为什么其中一些基因比其他基因转移得更频繁,也不清楚DNA介导的转移和RNA介导的转移之间的平衡是什么。虽然线粒体DNA直接插入细胞核在被子植物中经常发生,但功能性线粒体基因转移的案例研究表明存在一种RNA介导的机制,该机制可消除内含子和RNA编辑位点,否则这些位点会阻碍线粒体基因在细胞核中的正确表达。为了阐明促进功能性基因转移的机制以及在这些转移过程中建立的共存核基因和线粒体基因拷贝的进化动态,我们分析了90种草(禾本科)和相关单子叶植物的rpl5基因。多条证据表明,rpl5在禾本科中至少有三次独立地被功能性转移到细胞核中,并且至少有七个物种的线粒体和细胞核中都有完整且可转录(但不一定有功能)的拷贝。在两种草中,rpl5可能的功能性核拷贝最近通过二次转移的线粒体拷贝经历了基因转换事件,我们认为这是首次描述的线粒体到细胞核基因转换的案例。我们表明,rpl5在禾本科进化早期的线粒体基因组中经历了一次反转录加工事件,我们认为这通过产生一个“预编辑”序列使该基因倾向于成功的DNA介导的功能性转移。

相似文献

1
Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses.
Mol Biol Evol. 2017 Sep 1;34(9):2340-2354. doi: 10.1093/molbev/msx170.
3
Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses.
Gene. 2004 Jan 7;324:139-47. doi: 10.1016/j.gene.2003.09.027.
6
Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years.
Mol Genet Genomics. 2015 Dec;290(6):2325-33. doi: 10.1007/s00438-015-1087-6. Epub 2015 Jul 4.
10
Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus.
Mol Biol Evol. 2009 Apr;26(4):875-91. doi: 10.1093/molbev/msp011. Epub 2009 Jan 23.

引用本文的文献

1
Evolution of mitochondrial RNA editing sites and stop codon-lacking transcripts in angiosperms.
Commun Biol. 2025 Jul 1;8(1):977. doi: 10.1038/s42003-025-08418-9.
2
Assembly and Comparative Analysis of the Complete Mitochondrial Genome of .
Genes (Basel). 2025 May 28;16(6):652. doi: 10.3390/genes16060652.
3
Continuous infiltration and evolutionary trajectory of nuclear organelle DNA in .
Genome Res. 2025 Jun 2;35(6):1349-1363. doi: 10.1101/gr.279609.124.
7
Complete mitochondrial genome of the endangered (Prunoideae, Rosaceae) in China: characterization and phylogenetic analysis.
Front Plant Sci. 2023 Dec 8;14:1266797. doi: 10.3389/fpls.2023.1266797. eCollection 2023.

本文引用的文献

1
A review of long-branch attraction.
Cladistics. 2005 Apr;21(2):163-193. doi: 10.1111/j.1096-0031.2005.00059.x.
3
5
Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.
Genome Biol Evol. 2016 Aug 3;8(7):2176-89. doi: 10.1093/gbe/evw148.
6
Extensive Mitochondrial mRNA Editing and Unusual Mitochondrial Genome Organization in Calcaronean Sponges.
Curr Biol. 2016 Jan 11;26(1):86-92. doi: 10.1016/j.cub.2015.11.043. Epub 2015 Dec 24.
8
A synteny-based draft genome sequence of the forage grass Lolium perenne.
Plant J. 2015 Nov;84(4):816-26. doi: 10.1111/tpj.13037.
9
Resolving deep relationships of PACMAD grasses: a phylogenomic approach.
BMC Plant Biol. 2015 Jul 11;15:178. doi: 10.1186/s12870-015-0563-9.
10
Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years.
Mol Genet Genomics. 2015 Dec;290(6):2325-33. doi: 10.1007/s00438-015-1087-6. Epub 2015 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验