Erkenbrack Eric M, Petsios Elizabeth
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.
Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.
J Exp Zool B Mol Dev Evol. 2017 Jul;328(5):423-432. doi: 10.1002/jez.b.22743. Epub 2017 May 23.
Comparative studies of early development in echinoderms are revealing the tempo and mode of alterations to developmental gene regulatory networks and to the cell types they specify. In euechinoid sea urchins, skeletogenic mesenchyme (SM) ingresses prior to gastrulation at the vegetal pole and aligns into a ring-like array with two bilateral pockets of cells, the sites where spiculogenesis will later occur. In cidaroid sea urchins, the anciently diverged sister clade to euechinoid sea urchins, a homologous SM cell type ingresses later in development, after gastrulation has commenced, and consequently at a distinct developmental address. Thus, a heterochronic shift of ingression of the SM cell type occurred in one of the echinoid lineages. In euechinoids, specification and migration of SM are facilitated by vascular endothelial growth factor (VEGF) signaling. We describe spatiotemporal expression of vegf and vegfr and experimental manipulations targeting VEGF signaling in the cidaroid Eucidaris tribuloides. Spatially, vegf and vegfr mRNA localizes similarly as in euechinoids, suggesting conserved deployment in echinoids despite their spatially distinct development addresses of ingression. Inhibition of VEGF signaling in E. tribuloides suggests its role in SM specification is conserved in echinoids. Temporal discrepancies between the onset of vegf expression and SM ingression likely result in previous observations of SM "random wandering" behavior. Our results indicate that, although the SM cell type in echinoids ingresses into distinct developmental landscapes, it retains a signaling mechanism that restricts their spatial localization to a conserved developmental address where spiculogenesis later occurs.
棘皮动物早期发育的比较研究正在揭示发育基因调控网络及其所指定的细胞类型的变化节奏和模式。在真海胆纲海胆中,造骨间充质(SM)在原肠胚形成之前于植物极进入,并排列成环状阵列,带有两个双侧细胞袋,这是随后将发生骨针形成的部位。在cidaroid海胆中,它是真海胆纲海胆古老分化的姐妹分支,一种同源的SM细胞类型在发育后期进入,即在原肠胚形成开始之后,因此处于一个不同的发育位置。因此,在其中一个海胆谱系中发生了SM细胞类型进入的异时性转变。在真海胆纲中,SM的特化和迁移由血管内皮生长因子(VEGF)信号传导促进。我们描述了vegf和vegfr在cidaroid海胆Eucidaris tribuloides中的时空表达以及针对VEGF信号传导的实验操作。在空间上,vegf和vegfr mRNA的定位与真海胆纲中的情况相似,这表明尽管海胆的进入发育位置在空间上不同,但它们在海胆纲中的分布是保守的。对E. tribuloides中VEGF信号传导的抑制表明其在SM特化中的作用在海胆纲中是保守的。vegf表达开始与SM进入之间的时间差异可能导致了之前对SM“随机游走”行为的观察结果。我们的结果表明,尽管海胆纲中的SM细胞类型进入不同的发育环境,但它保留了一种信号传导机制,将它们的空间定位限制在一个保守的发育位置,随后在此发生骨针形成。