Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Wiley Interdiscip Rev Syst Biol Med. 2018 Jan;10(1). doi: 10.1002/wsbm.1390. Epub 2017 May 22.
Enhancers serve as critical regulatory elements in higher eukaryotic cells. The characterization of enhancer function has evolved primarily from genome-wide methodologies, including chromatin immunoprecipitation (ChIP-seq), DNase-I hypersensitivity (DNase-seq), digital genomic footprinting (DGF), and the chromosome conformation capture techniques (3C, 4C, and Hi-C). These population-based assays average signals across millions of cells and lead to enhancer models characterized by static and sequential binding. More recently, fluorescent microscopy techniques, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single molecule tracking (SMT), reveal a highly dynamic binding behavior for these factors in live cells. Furthermore, a refined analysis of genomic footprinting suggests that many transcription factors leave minimal or no footprints in chromatin, even when present and active in a given cell type. In this study, we review the implications of these new approaches for an accurate understanding of enhancer function in real time. In vivo SMT, in particular, has recently evolved as a promising methodology to probe enhancer function in live cells. Integration of findings from the many approaches now employed in the study of enhancer function suggest a highly dynamic view for the action of enhancer activating factors, viewed on a time scale of milliseconds to seconds, rather than minutes to hours. WIREs Syst Biol Med 2018, 10:e1390. doi: 10.1002/wsbm.1390 This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Imaging.
增强子作为高等真核细胞中的关键调控元件。增强子功能的表征主要来自于全基因组方法,包括染色质免疫沉淀(ChIP-seq)、DNase-I 超敏(DNase-seq)、数字基因组足迹(DGF)和染色体构象捕获技术(3C、4C 和 Hi-C)。这些基于群体的检测方法在数百万个细胞中平均信号,并导致增强子模型具有静态和顺序结合的特征。最近,荧光显微镜技术,包括光漂白后荧光恢复、荧光相关光谱和单分子跟踪(SMT),揭示了这些因子在活细胞中具有高度动态的结合行为。此外,对基因组足迹的精细分析表明,即使在给定的细胞类型中存在并活跃,许多转录因子在染色质中也只留下最小或没有足迹。在这项研究中,我们回顾了这些新方法对实时准确理解增强子功能的意义。特别是,体内 SMT 最近作为一种有前途的方法,用于探测活细胞中的增强子功能。整合目前用于研究增强子功能的许多方法的研究结果表明,增强子激活因子的作用具有高度动态性,可以在毫秒到秒的时间尺度上观察,而不是分钟到小时。WIREs Syst Biol Med 2018, 10:e1390. doi: 10.1002/wsbm.1390 本文分类于:分析和计算方法>计算方法 实验室方法和技术>遗传/基因组方法 实验室方法和技术>成像。