Suppr超能文献

在大系统发育中进行基因组规模的调控网络的推断和进化分析。

Inference and Evolutionary Analysis of Genome-Scale Regulatory Networks in Large Phylogenies.

机构信息

Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

Cell Syst. 2017 May 24;4(5):543-558.e8. doi: 10.1016/j.cels.2017.04.010.

Abstract

Changes in transcriptional regulatory networks can significantly contribute to species evolution and adaptation. However, identification of genome-scale regulatory networks is an open challenge, especially in non-model organisms. Here, we introduce multi-species regulatory network learning (MRTLE), a computational approach that uses phylogenetic structure, sequence-specific motifs, and transcriptomic data, to infer the regulatory networks in different species. Using simulated data from known networks and transcriptomic data from six divergent yeasts, we demonstrate that MRTLE predicts networks with greater accuracy than existing methods because it incorporates phylogenetic information. We used MRTLE to infer the structure of the transcriptional networks that control the osmotic stress responses of divergent, non-model yeast species and then validated our predictions experimentally. Interrogating these networks reveals that gene duplication promotes network divergence across evolution. Taken together, our approach facilitates study of regulatory network evolutionary dynamics across multiple poorly studied species.

摘要

转录调控网络的变化可以显著促进物种的进化和适应。然而,在非模式生物中,大规模调控网络的鉴定仍然是一个开放的挑战。在这里,我们引入了多物种调控网络学习(MRTLE)方法,这是一种利用系统发育结构、序列特异性基序和转录组数据来推断不同物种调控网络的计算方法。使用来自已知网络的模拟数据和来自六种不同酵母的转录组数据,我们证明了 MRTLE 比现有方法更准确地预测网络,因为它整合了系统发育信息。我们使用 MRTLE 推断了控制不同非模式酵母物种渗透胁迫反应的转录网络的结构,然后通过实验验证了我们的预测。对这些网络的研究表明,基因复制促进了网络在进化过程中的分歧。总之,我们的方法促进了对多个研究较少的物种的调控网络进化动态的研究。

相似文献

3
Refining regulatory networks through phylogenetic transfer of information.通过信息的系统发生转移来精炼调控网络。
IEEE/ACM Trans Comput Biol Bioinform. 2012 Jul-Aug;9(4):1032-45. doi: 10.1109/TCBB.2012.62.
5
Comparative analysis of gene regulatory networks: from network reconstruction to evolution.比较基因调控网络分析:从网络重构到进化。
Annu Rev Cell Dev Biol. 2015;31:399-428. doi: 10.1146/annurev-cellbio-100913-012908. Epub 2015 Sep 3.

引用本文的文献

10
Ancestral reconstruction of protein interaction networks.蛋白质相互作用网络的祖先重建。
PLoS Comput Biol. 2019 Oct 28;15(10):e1007396. doi: 10.1371/journal.pcbi.1007396. eCollection 2019 Oct.

本文引用的文献

2
Comparative analysis of gene regulatory networks: from network reconstruction to evolution.比较基因调控网络分析:从网络重构到进化。
Annu Rev Cell Dev Biol. 2015;31:399-428. doi: 10.1146/annurev-cellbio-100913-012908. Epub 2015 Sep 3.
5
How do regulatory networks evolve and expand throughout evolution?调控网络在整个进化过程中是如何演变和扩展的?
Curr Opin Biotechnol. 2015 Aug;34:180-8. doi: 10.1016/j.copbio.2015.02.001. Epub 2015 Feb 24.
7
The genomic substrate for adaptive radiation in African cichlid fish.非洲丽鱼适应性辐射的基因组基础。
Nature. 2014 Sep 18;513(7518):375-381. doi: 10.1038/nature13726. Epub 2014 Sep 3.
10
Mapping yeast transcriptional networks.绘制酵母转录网络。
Genetics. 2013 Sep;195(1):9-36. doi: 10.1534/genetics.113.153262.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验