Department of Physics, Brandeis University, Waltham, MA 02454, USA.
Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France.
Cell Syst. 2017 May 24;4(5):559-567.e14. doi: 10.1016/j.cels.2017.04.011.
How the size of micrometer-scale cellular structures such as the mitotic spindle, cytoskeletal filaments, the nucleus, the nucleolus, and other non-membrane bound organelles is controlled despite a constant turnover of their constituent parts is a central problem in biology. Experiments have implicated the limiting-pool mechanism: structures grow by stochastic addition of molecular subunits from a finite pool until the rates of subunit addition and removal are balanced, producing a structure of well-defined size. Here, we consider these dynamics when multiple filamentous structures are assembled stochastically from a shared pool of subunits. Using analytical calculations and computer simulations, we show that robust size control can be achieved only when a single filament is assembled. When multiple filaments compete for monomers, filament lengths exhibit large fluctuations. These results extend to three-dimensional structures and reveal the physical limitations of the limiting-pool mechanism of size control when multiple organelles are assembled from a shared pool of subunits.
尽管组成细胞结构的部分不断更新,但微米级别的细胞结构(如有丝分裂纺锤体、细胞骨架丝、核、核仁以及其他非膜结合细胞器)的大小如何得到控制,这是生物学中的一个核心问题。实验表明,限制池机制起了作用:结构通过从有限的池中随机添加分子亚基来生长,直到亚基的添加和去除速率达到平衡,从而产生具有明确定义大小的结构。在这里,当多个丝状结构从共享的亚基池中随机组装时,我们考虑了这些动力学。通过分析计算和计算机模拟,我们表明只有当组装一个丝状结构时才能实现稳健的尺寸控制。当多个丝状结构竞争单体时,丝状长度会出现很大的波动。这些结果扩展到三维结构,并揭示了当多个细胞器从共享的亚基池中组装时,限制池尺寸控制机制的物理限制。