Suppr超能文献

口腔白斑患者口腔癌风险的定量预测

Quantitative prediction of oral cancer risk in patients with oral leukoplakia.

作者信息

Liu Yao, Li Yicheng, Fu Yue, Liu Tong, Liu Xiaoyong, Zhang Xinyan, Fu Jie, Guan Xiaobing, Chen Tong, Chen Xiaoxin, Sun Zheng

机构信息

Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.

Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA.

出版信息

Oncotarget. 2017 Jul 11;8(28):46057-46064. doi: 10.18632/oncotarget.17550.

Abstract

Exfoliative cytology has been widely used for early diagnosis of oral squamous cell carcinoma. We have developed an oral cancer risk index using DNA index value to quantitatively assess cancer risk in patients with oral leukoplakia, but with limited success. In order to improve the performance of the risk index, we collected exfoliative cytology, histopathology, and clinical follow-up data from two independent cohorts of normal, leukoplakia and cancer subjects (training set and validation set). Peaks were defined on the basis of first derivatives with positives, and modern machine learning techniques were utilized to build statistical prediction models on the reconstructed data. Random forest was found to be the best model with high sensitivity (100%) and specificity (99.2%). Using the Peaks-Random Forest model, we constructed an index (OCRI2) as a quantitative measurement of cancer risk. Among 11 leukoplakia patients with an OCRI2 over 0.5, 4 (36.4%) developed cancer during follow-up (23 ± 20 months), whereas 3 (5.3%) of 57 leukoplakia patients with an OCRI2 less than 0.5 developed cancer (32 ± 31 months). OCRI2 is better than other methods in predicting oral squamous cell carcinoma during follow-up. In conclusion, we have developed an exfoliative cytology-based method for quantitative prediction of cancer risk in patients with oral leukoplakia.

摘要

脱落细胞学已被广泛用于口腔鳞状细胞癌的早期诊断。我们开发了一种使用DNA指数值的口腔癌风险指数,以定量评估口腔白斑患者的癌症风险,但成效有限。为了提高风险指数的性能,我们收集了来自正常、白斑和癌症患者两个独立队列(训练集和验证集)的脱落细胞学、组织病理学和临床随访数据。根据带有正值的一阶导数定义峰值,并利用现代机器学习技术在重建数据上建立统计预测模型。发现随机森林是具有高灵敏度(100%)和特异性(99.2%)的最佳模型。使用Peaks-随机森林模型,我们构建了一个指数(OCRI2)作为癌症风险的定量测量。在11名OCRI2超过0.5的白斑患者中,4名(36.4%)在随访期间(23±20个月)发生了癌症,而在57名OCRI2小于0.5的白斑患者中,3名(5.3%)发生了癌症(32±31个月)。在随访期间,OCRI2在预测口腔鳞状细胞癌方面比其他方法更好。总之,我们开发了一种基于脱落细胞学的方法,用于定量预测口腔白斑患者的癌症风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688c/5542248/b182e465ebb3/oncotarget-08-46057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验