Suppr超能文献

Dhtkd1-/Gcdh- 双基因敲除小鼠中天冬氨酸水平升高,这对我们目前对赖氨酸代谢的理解提出了挑战。

Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism.

机构信息

Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.

Institute of Human Genetics, Technical University Munich, Trogerstr. 32, 81675 Munich, Germany.

出版信息

Biochim Biophys Acta Mol Basis Dis. 2017 Sep;1863(9):2220-2228. doi: 10.1016/j.bbadis.2017.05.018. Epub 2017 May 22.

Abstract

Glutaric aciduria type I (GA-I) is a rare organic aciduria caused by the autosomal recessive inherited deficiency of glutaryl-CoA dehydrogenase (GCDH). GCDH deficiency leads to disruption of l-lysine degradation with characteristic accumulation of glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, 3-hydroxyglutaric acid (3-OHGA). DHTKD1 acts upstream of GCDH, and its deficiency leads to none or often mild clinical phenotype in humans, 2-aminoadipic 2-oxoadipic aciduria. We hypothesized that inhibition of DHTKD1 may prevent the accumulation of neurotoxic dicarboxylic metabolites suggesting DHTKD1 inhibition as a possible treatment strategy for GA-I. In order to validate this hypothesis we took advantage of an existing GA-I (Gcdh) mouse model and established a Dhtkd1 deficient mouse model. Both models reproduced the biochemical and clinical phenotype observed in patients. Under challenging conditions of a high lysine diet, only Gcdh mice but not Dhtkd1 mice developed clinical symptoms such as lethargic behaviour and weight loss. However, the genetic Dhtkd1 inhibition in Dhtkd1/Gcdh mice could not rescue the GA-I phenotype. Biochemical results confirm this finding with double knockout mice showing similar metabolite accumulations as Gcdh mice with high GA in brain and liver. This suggests that DHTKD1 inhibition alone is not sufficient to treat GA-I, but instead a more complex strategy is needed. Our data highlights the many unresolved questions within the l-lysine degradation pathway and provides evidence for a so far unknown mechanism leading to glutaryl-CoA.

摘要

I 型戊二酸血症(GA-I)是一种罕见的有机酸血症,由常染色体隐性遗传的谷氨酰辅酶 A 脱氢酶(GCDH)缺陷引起。GCDH 缺陷导致 l-赖氨酸降解中断,特征性地积累戊二酰肉碱和神经毒性戊酸(GA)、谷氨酰辅酶 A、3-羟基戊二酸(3-OHGA)。DHTKD1 位于 GCDH 的上游,其缺陷导致人类无或常表现为轻度临床表型,即 2-氨基己二酸 2-氧代己二酸尿症。我们假设抑制 DHTKD1 可能会阻止神经毒性二羧酸代谢物的积累,这表明 DHTKD1 抑制可能是 GA-I 的一种潜在治疗策略。为了验证这一假设,我们利用现有的 GA-I(Gcdh)小鼠模型建立了 Dhtkd1 缺陷型小鼠模型。两种模型均再现了患者中观察到的生化和临床表型。在高赖氨酸饮食的挑战性条件下,只有 Gcdh 小鼠而不是 Dhtkd1 小鼠出现了昏睡行为和体重减轻等临床症状。然而,Dhtkd1 基因在 Dhtkd1/Gcdh 小鼠中的抑制不能挽救 GA-I 表型。生化结果证实了这一发现,双敲除小鼠显示与 Gcdh 小鼠相似的代谢物积累,大脑和肝脏中的 GA 含量高。这表明单独抑制 DHTKD1 不足以治疗 GA-I,而是需要更复杂的策略。我们的数据突出了 l-赖氨酸降解途径中许多未解决的问题,并为导致谷氨酰辅酶 A 的未知机制提供了证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验