Hillman Cancer Center and Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
Nature. 2023 May;617(7962):818-826. doi: 10.1038/s41586-023-06061-0. Epub 2023 May 17.
Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment. Lysine functions as a biosynthetic molecule, energy source and antioxidant, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8 T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.
癌细胞重新布线代谢,以有利于生成专门的代谢产物,这些产物支持肿瘤生长并重塑肿瘤微环境。赖氨酸是一种生物合成分子、能量来源和抗氧化剂,但人们对其在癌症中的病理作用知之甚少。在这里,我们表明神经胶质瘤干细胞(GSCs)通过上调赖氨酸转运蛋白 SLC7A2 和产生丙酰辅酶 A( crotonyl-CoA)的酶谷氨酸酰辅酶 A 脱氢酶(GCDH),以及下调 crotonyl-CoA 水合酶烯酰辅酶 A 水合酶短链 1(ECHS1),重新编程赖氨酸分解代谢,导致细胞内 crotonyl-CoA 和组蛋白 H4 赖氨酸 crotonylation 的积累。通过遗传操作或赖氨酸限制降低组蛋白赖氨酸 crotonylation 会损害肿瘤生长。在核内,GCDH 与 crotonyltransferase CBP 相互作用,促进组蛋白赖氨酸 crotonylation。组蛋白赖氨酸 crotonylation 的缺失通过增强 H3K27ac 促进免疫原性细胞质双链 RNA(dsRNA)和 dsDNA 的生成,这会刺激 RNA 传感器 MDA5 和 DNA 传感器环鸟苷酸-腺苷酸合酶(cGAS),从而增强 I 型干扰素信号,导致 GSC 肿瘤发生潜能受损和 CD8 T 细胞浸润增加。限制赖氨酸饮食与 MYC 抑制或抗 PD-1 治疗协同作用,以减缓肿瘤生长。总之,GSCs 共同采用赖氨酸摄取和降解来转移 crotonyl-CoA 的产生,重塑染色质景观,以逃避干扰素对 GSC 维持的内在影响和对免疫反应的外在影响。