Tsanas Athanasios, Saunders Kate, Bilderbeck Amy, Palmius Niclas, Goodwin Guy, De Vos Maarten
Usher Institute of Population Health Sciences and Informatics, Medical School, University of Edinburgh, Edinburgh, United Kingdom.
Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
JMIR Ment Health. 2017 May 25;4(2):e15. doi: 10.2196/mental.6917.
We recently described a new questionnaire to monitor mood called mood zoom (MZ). MZ comprises 6 items assessing mood symptoms on a 7-point Likert scale; we had previously used standard principal component analysis (PCA) to tentatively understand its properties, but the presence of multiple nonzero loadings obstructed the interpretation of its latent variables.
The aim of this study was to rigorously investigate the internal properties and latent variables of MZ using an algorithmic approach which may lead to more interpretable results than PCA. Additionally, we explored three other widely used psychiatric questionnaires to investigate latent variable structure similarities with MZ: (1) Altman self-rating mania scale (ASRM), assessing mania; (2) quick inventory of depressive symptomatology (QIDS) self-report, assessing depression; and (3) generalized anxiety disorder (7-item) (GAD-7), assessing anxiety.
We elicited responses from 131 participants: 48 bipolar disorder (BD), 32 borderline personality disorder (BPD), and 51 healthy controls (HC), collected longitudinally (median [interquartile range, IQR]: 363 [276] days). Participants were requested to complete ASRM, QIDS, and GAD-7 weekly (all 3 questionnaires were completed on the Web) and MZ daily (using a custom-based smartphone app). We applied sparse PCA (SPCA) to determine the latent variables for the four questionnaires, where a small subset of the original items contributes toward each latent variable.
We found that MZ had great consistency across the three cohorts studied. Three main principal components were derived using SPCA, which can be tentatively interpreted as (1) anxiety and sadness, (2) positive affect, and (3) irritability. The MZ principal component comprising anxiety and sadness explains most of the variance in BD and BPD, whereas the positive affect of MZ explains most of the variance in HC. The latent variables in ASRM were identical for the patient groups but different for HC; nevertheless, the latent variables shared common items across both the patient group and HC. On the contrary, QIDS had overall very different principal components across groups; sleep was a key element in HC and BD but was absent in BPD. In GAD-7, nervousness was the principal component explaining most of the variance in BD and HC.
This study has important implications for understanding self-reported mood. MZ has a consistent, intuitively interpretable latent variable structure and hence may be a good instrument for generic mood assessment. Irritability appears to be the key distinguishing latent variable between BD and BPD and might be useful for differential diagnosis. Anxiety and sadness are closely interlinked, a finding that might inform treatment effects to jointly address these covarying symptoms. Anxiety and nervousness appear to be amongst the cardinal latent variable symptoms in BD and merit close attention in clinical practice.
我们最近描述了一种名为情绪缩放(MZ)的用于监测情绪的新问卷。MZ由6个项目组成,这些项目在7点李克特量表上评估情绪症状;我们之前使用标准主成分分析(PCA)初步了解其特性,但多个非零载荷的存在阻碍了对其潜在变量的解释。
本研究的目的是使用一种算法方法严格调查MZ的内部特性和潜在变量,该方法可能比PCA产生更具可解释性的结果。此外,我们还探索了其他三种广泛使用的精神科问卷,以研究与MZ潜在变量结构的相似性:(1)阿尔特曼自评躁狂量表(ASRM),用于评估躁狂;(2)抑郁症状快速自评量表(QIDS),用于评估抑郁;(3)广泛性焦虑障碍(7项)(GAD - 7),用于评估焦虑。
我们收集了131名参与者的回复:48名双相情感障碍(BD)患者、32名边缘性人格障碍(BPD)患者和51名健康对照者(HC),数据为纵向收集(中位数[四分位间距,IQR]:363[276]天)。参与者被要求每周完成ASRM、QIDS和GAD - 7(所有这3份问卷均在网上完成),并每天完成MZ(使用基于定制的智能手机应用程序)。我们应用稀疏主成分分析(SPCA)来确定这四份问卷的潜在变量,其中一小部分原始项目构成每个潜在变量。
我们发现MZ在研究的三个队列中具有高度一致性。使用SPCA得出了三个主要主成分,可初步解释为:(1)焦虑和悲伤,(2)积极情绪,(3)易怒。包含焦虑和悲伤的MZ主成分解释了BD和BPD中的大部分方差,而MZ的积极情绪解释了HC中的大部分方差。ASRM在患者组中的潜在变量相同,但在HC中不同;然而,潜在变量在患者组和HC中都有共同的项目。相反,QIDS在各组之间总体上有非常不同的主成分;睡眠是HC和BD中的关键要素,但在BPD中不存在。在GAD - 7中,紧张是解释BD和HC中大部分方差的主成分。
本研究对理解自我报告的情绪具有重要意义。MZ具有一致的、直观上可解释的潜在变量结构,因此可能是一种用于一般情绪评估的良好工具。易怒似乎是BD和BPD之间关键的区分潜在变量,可能有助于鉴别诊断。焦虑和悲伤密切相关,这一发现可能为联合解决这些共同变化的症状的治疗效果提供信息。焦虑和紧张似乎是BD中的主要潜在变量症状,在临床实践中值得密切关注。