Suppr超能文献

从地理位置数据中检测双相抑郁症

Detecting Bipolar Depression From Geographic Location Data.

作者信息

Palmius N, Tsanas A, Saunders K E A, Bilderbeck A C, Geddes J R, Goodwin G M, De Vos M

出版信息

IEEE Trans Biomed Eng. 2017 Aug;64(8):1761-1771. doi: 10.1109/TBME.2016.2611862. Epub 2016 Oct 25.

Abstract

OBJECTIVE

This paper aims to identify periods of depression using geolocation movements recorded from mobile phones in a prospective community study of individuals with bipolar disorder (BD).

METHODS

Anonymized geographic location recordings from 22 BD participants and 14 healthy controls (HC) were collected over 3 months. Participants reported their depressive symptomatology using a weekly questionnaire (QIDS-SR). Recorded location data were preprocessed by detecting and removing imprecise data points and features were extracted to assess the level and regularity of geographic movements of the participant. A subset of features were selected using a wrapper feature selection method and presented to 1) a linear regression model and a quadratic generalized linear model with a logistic link function for questionnaire score estimation; and 2) a quadratic discriminant analysis classifier for depression detection in BD participants based on their questionnaire responses. R esults: HC participants did not report depressive symptoms and their features showed similar distributions to nondepressed BD participants. Questionnaire score estimation using geolocation-derived features from BD participants demonstrated an optimal mean absolute error rate of 3.73, while depression detection demonstrated an optimal (median ± IQR) [Formula: see text] score of 0.857 ± 0.022 using five features (classification accuracy: 0.849 ± 0.016; sensitivity: 0.839 ± 0.014; specificity: 0.872 ± 0.047).

CONCLUSION

These results demonstrate a strong link between geographic movements and depression in bipolar disorder. S ignificance: To our knowledge, this is the first community study of passively recorded objective markers of depression in bipolar disorder of this scale. The techniques could help individuals monitor their depression and enable healthcare providers to detect those in need of care or treatment.

摘要

目的

在一项针对双相情感障碍(BD)患者的前瞻性社区研究中,本文旨在利用手机记录的地理位置移动信息来识别抑郁发作期。

方法

在3个月的时间里收集了22名BD患者和14名健康对照者(HC)的匿名地理位置记录。参与者每周通过问卷(QIDS - SR)报告他们的抑郁症状。通过检测和去除不精确的数据点对记录的位置数据进行预处理,并提取特征以评估参与者地理移动的水平和规律性。使用包装特征选择方法选择了一部分特征,并将其呈现给:1)用于问卷评分估计的线性回归模型和具有逻辑链接函数的二次广义线性模型;2)基于BD患者问卷回答进行抑郁检测的二次判别分析分类器。

结果

HC参与者未报告抑郁症状,其特征与未患抑郁症的BD参与者表现出相似的分布。使用BD参与者基于地理位置的特征进行问卷评分估计,平均绝对误差率最优为3.73,而抑郁检测使用五个特征时最优(中位数±四分位数间距)[公式:见原文]评分为0.857±0.022(分类准确率:0.849±0.016;灵敏度:0.839±0.014;特异性:0.872±0.047)。

结论

这些结果表明双相情感障碍患者的地理移动与抑郁之间存在紧密联系。

意义

据我们所知,这是首次对如此规模的双相情感障碍患者抑郁的被动记录客观标志物进行的社区研究。这些技术可以帮助个体监测自己的抑郁情况,并使医疗保健提供者能够检测出需要护理或治疗的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5341/5947818/f7ac1a04b527/emss-77486-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验