Sheets Lavinia, He Xinyi J, Olt Jennifer, Schreck Mary, Petralia Ronald S, Wang Ya-Xian, Zhang Qiuxiang, Beirl Alisha, Nicolson Teresa, Marcotti Walter, Trapani Josef G, Kindt Katie S
Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts 02115.
Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts 02114.
J Neurosci. 2017 Jun 28;37(26):6299-6313. doi: 10.1523/JNEUROSCI.2878-16.2017. Epub 2017 May 25.
In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli.
在听觉和前庭器官的感觉毛细胞中,带状突触对于精确编码各种复杂刺激是必需的。毛细胞具有独特的突触前结构——突触带,它在活跃区组织突触小泡和钙通道。先前的研究表明,毛细胞突触带的大小与突触后活动的差异相关。然而,突触后大小的额外变异性给确定突触带大小在感觉编码中的具体作用带来了挑战。为了选择性地评估突触带大小对突触功能的影响,我们研究了转基因斑马鱼中突触带增大但突触后无改变的毛细胞。在形态学上,我们发现增大的突触带具有更多相关的小泡,并且突触前钙通道聚集减少。在功能上,突触带增大的毛细胞具有更大的整体和突触带局部钙电流。传入神经元记录显示,突触带增大的毛细胞导致自发放电率降低。此外,尽管突触前钙信号更大,但我们观察到刺激开始后诱发的放电次数减少,潜伏期更长。总之,我们的研究表明,毛细胞突触带大小会影响传入神经元的自发放电和刺激开始的精确编码。许多研究支持毛细胞突触带大小与传入神经元的功能敏感性差异相对应,并且在耳蜗内毛细胞的情况下,与噪声创伤造成损伤的易感性相关。然而,尚不清楚突触带大小是否直接影响感觉编码。我们的研究表明,突触带增大导致突触带局部钙信号增加,但会降低传入神经元的自发活动并扰乱刺激开始的时间,这是听觉和前庭编码的一个独特方面。这些观察结果表明,仅改变突触带大小就能影响感觉编码,并进一步深入了解毛细胞如何转导覆盖广泛动态范围刺激的信号。